1 from tensorflow.examples.tutorials.mnist import input_data 2 import tensorflow as tf 3 4 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 5 sess = tf.InteractiveSession() 6 7 def weight_variable(shape): 8 '''初始化權重函數,truncated_normal建立標準差爲0.2的截斷正態函數''' 9 initial = tf.truncated_normal(shape, stddev=0.1) 10 return tf.Variable(initial) 11 12 def bias_variable(shape): 13 '''初始化偏置函數,因爲使用ReLU要加一些正值0.1,避免死亡節點(dead neurons)''' 14 initial = tf.constant(0.1, shape = shape) 15 return tf.Variable(initial) 16 17 def conv2d(x, W): 18 '''x:輸入 w:卷積參數 例[5, 5, 1, 32]:5, 5爲卷積核尺寸 19 1:爲多少channel 彩色是3 灰度是1 20 32:爲卷積核的數量(這個卷積層會提取的多少類特徵) 21 strides:卷積模板移動的步長 22 padding:表明邊界處理方式,SAME即輸入和輸出保持一樣尺寸''' 23 return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME') 24 25 def max_pool_2x2(x): 26 '''池化層函數 max_pool:最大池化函數''' 27 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], 28 padding='SAME') 29 30 #x:特徵 31 x = tf.placeholder(tf.float32, [None, 784]) 32 #y_真實的label 33 y_ = tf.placeholder(tf.float32, [None, 10]) 34 '''卷積神經網絡會利用到原有的空間結構信息,所以須要將1D的輸入向量轉化爲2D圖片結構(1x784->28x28) 35 由於只有一個顏色通道,故最終尺寸爲[-1, 28, 28, 1]其中:-1表明樣本數量不固定,1表明顏色通道數量''' 36 x_image = tf.reshape(x, [-1, 28, 28, 1]) 37 38 '''先定義weights和bias,而後使用conv2d函數進行卷積操做並加上偏置, 39 接着使用ReLU激活函數進行非線性處理,最好使用max_pool_2x2對卷積的輸出結果進行池化操做''' 40 w_conv1 = weight_variable([5, 5, 1, 32]) 41 b_conv1 = bias_variable([32]) 42 h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1)+b_conv1) 43 h_pool1 = max_pool_2x2(h_conv1) 44 45 #定義第二個卷積層,不一樣在於特徵變爲64 46 w_conv2 = weight_variable([5, 5, 32, 64]) 47 b_conv2 = bias_variable([64]) 48 h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2)+b_conv2) 49 h_pool2 = max_pool_2x2(h_conv2) 50 51 '''經歷兩次2x2步長的最大池化,邊長變爲1/4,圖片尺寸由28x28->7x7 52 因爲第二個卷積層的卷積核數量爲64,其輸出tensor尺寸爲7x7x64。 53 使用tf.reshape函數對其變形,轉化爲1D向量,而後鏈接一個全鏈接層, 54 隱含節點爲1024,並使用Relu激活函數''' 55 w_fc1 = weight_variable([7*7*64, 1024]) 56 b_fc1 = bias_variable([1024]) 57 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) 58 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1)+b_fc1) 59 60 #爲減輕過擬合,使用一個dropout層 61 keep_prob = tf.placeholder(tf.float32) 62 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 63 64 #dropout層輸出連softmax層,獲得最後的機率輸出 65 w_fc2 = weight_variable([1024, 10]) 66 b_fc2 = bias_variable([10]) 67 y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2)+b_fc2) 68 69 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), 70 reduction_indices=[1])) 71 72 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 73 74 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) 75 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 76 77 tf.global_variables_initializer().run() 78 for i in range(20000): 79 batch = mnist.train.next_batch(50) 80 if i%100 == 0: 81 train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) 82 print("step %d, train accuracy %g"%(i, train_accuracy)) 83 84 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) 85 86 print("test accuracy%g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
1 step 0, train accuracy 0.22 2 step 100, train accuracy 0.9 3 step 200, train accuracy 0.88 4 step 300, train accuracy 0.9 5 step 400, train accuracy 0.96 6 step 500, train accuracy 0.96 7 step 600, train accuracy 0.98 8 step 700, train accuracy 0.96 9 step 800, train accuracy 0.98 10 step 900, train accuracy 0.96 11 step 1000, train accuracy 0.98 12 step 18000, train accuracy 1 13 step 18100, train accuracy 1 14 step 18200, train accuracy 0.98 15 step 18300, train accuracy 1 16 step 18400, train accuracy 1 17 step 18500, train accuracy 1 18 step 18600, train accuracy 1 19 step 18700, train accuracy 1 20 step 18800, train accuracy 1 21 step 18900, train accuracy 1 22 step 19000, train accuracy 1 23 step 19100, train accuracy 1 24 step 19200, train accuracy 1 25 step 19300, train accuracy 1 26 step 19400, train accuracy 1 27 step 19500, train accuracy 1 28 step 19600, train accuracy 1 29 step 19700, train accuracy 1 30 step 19800, train accuracy 1 31 step 19900, train accuracy 1 32 step 20000, train accuracy 1