NetworkX是一個用Python語言開發的圖論與複雜網絡建模工具,內置了經常使用的圖與複雜網絡分析算法,能夠方便的進行復雜網絡數據分析、仿真建模等工做。networkx支持建立簡單無向圖、有向圖和多重圖(multigraph);內置許多標準的圖論算法,節點可爲任意數據;支持任意的邊值維度,功能豐富,簡單易用。node
引入模塊算法
import networkx as nx print nx
例1:網絡
#!-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.Graph() #創建一個空的無向圖G G.add_node(1) #添加一個節點1 G.add_edge(2,3) #添加一條邊2-3(隱含着添加了兩個節點二、3) G.add_edge(3,2) #對於無向圖,邊3-2與邊2-3被認爲是一條邊 print "nodes:", G.nodes() #輸出所有的節點: [1, 2, 3] print "edges:", G.edges() #輸出所有的邊:[(2, 3)] print "number of edges:", G.number_of_edges() #輸出邊的數量:1 nx.draw(G) plt.savefig("wuxiangtu.png") plt.show()
輸出函數
nodes: [1, 2, 3] edges: [(2, 3)] number of edges: 1
例2:工具
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() G.add_node(1) G.add_node(2) #加點 G.add_nodes_from([3,4,5,6]) #加點集合 G.add_cycle([1,2,3,4]) #加環 G.add_edge(1,3) G.add_edges_from([(3,5),(3,6),(6,7)]) #加邊集合 nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
例1:spa
#!-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() G.add_node(1) G.add_node(2) G.add_nodes_from([3,4,5,6]) G.add_cycle([1,2,3,4]) G.add_edge(1,3) G.add_edges_from([(3,5),(3,6),(6,7)]) nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
注:有向圖和無向圖能夠互相轉換,使用函數:3d
例2,例子中把有向圖轉化爲無向圖:code
#!-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() G.add_node(1) G.add_node(2) G.add_nodes_from([3,4,5,6]) G.add_cycle([1,2,3,4]) G.add_edge(1,3) G.add_edges_from([(3,5),(3,6),(6,7)]) G = G.to_undirected() nx.draw(G) plt.savefig("wuxiangtu.png") plt.show()
注意區分如下2例component
例3-1blog
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() road_nodes = {'a': 1, 'b': 2, 'c': 3} #road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}} road_edges = [('a', 'b'), ('b', 'c')] G.add_nodes_from(road_nodes.iteritems()) G.add_edges_from(road_edges) nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
例3-2
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() #road_nodes = {'a': 1, 'b': 2, 'c': 3} road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}} road_edges = [('a', 'b'), ('b', 'c')] G.add_nodes_from(road_nodes.iteritems()) G.add_edges_from(road_edges) nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
有向圖和無向圖均可以給邊賦予權重,用到的方法是add_weighted_edges_from,它接受1個或多個三元組[u,v,w]做爲參數,其中u是起點,v是終點,w是權重。
例1:
#!-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.Graph() #創建一個空的無向圖G G.add_edge(2,3) #添加一條邊2-3(隱含着添加了兩個節點二、3) G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)]) #對於無向圖,邊3-2與邊2-3被認爲是一條邊 print G.get_edge_data(2, 3) print G.get_edge_data(3, 4) print G.get_edge_data(3, 5) nx.draw(G) plt.savefig("wuxiangtu.png") plt.show()
輸出
{} {'weight': 3.5} {'weight': 7.0}
計算1:求無向圖的任意兩點間的最短路徑
# -*- coding: cp936 -*- import networkx as nx import matplotlib.pyplot as plt #計算1:求無向圖的任意兩點間的最短路徑 G = nx.Graph() G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)]) path = nx.all_pairs_shortest_path(G) print path[1]
計算2:找圖中兩個點的最短路徑
import networkx as nx G=nx.Graph() G.add_nodes_from([1,2,3,4]) G.add_edge(1,2) G.add_edge(3,4) try: n=nx.shortest_path_length(G,1,4) print n except nx.NetworkXNoPath: print 'No path'
距離
例1:弱連通
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt #G = nx.path_graph(4, create_using=nx.Graph()) #0 1 2 3 G = nx.path_graph(4, create_using=nx.DiGraph()) #默認生成節點0 1 2 3,生成有向變0->1,1->2,2->3 G.add_path([7, 8, 3]) #生成有向邊:7->8->3 for c in nx.weakly_connected_components(G): print c print [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)] nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
執行結果
set([0, 1, 2, 3, 7, 8])
[6]
例2:強連通
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt #G = nx.path_graph(4, create_using=nx.Graph()) #0 1 2 3 G = nx.path_graph(4, create_using=nx.DiGraph()) G.add_path([3, 8, 1]) #for c in nx.strongly_connected_components(G): # print c # #print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)] con = nx.strongly_connected_components(G) print con print type(con) print list(con) nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
執行結果
<generator object strongly_connected_components at 0x0000000008AA1D80> <type 'generator'> [set([8, 1, 2, 3]), set([0])]
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() G.add_path([5, 6, 7, 8]) sub_graph = G.subgraph([5, 6, 8]) #sub_graph = G.subgraph((5, 6, 8)) #ok 同樣 nx.draw(sub_graph) plt.savefig("youxiangtu.png") plt.show()
#原圖
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}} road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')] G.add_nodes_from(road_nodes) G.add_edges_from(road_edges) nx.draw(G) plt.savefig("youxiangtu.png") plt.show()
圖
#過濾函數
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() def flt_func_draw(): flt_func = lambda d: d['id'] != 1 return flt_func road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}} road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')] G.add_nodes_from(road_nodes.iteritems()) G.add_edges_from(road_edges) flt_func = flt_func_draw() part_G = G.subgraph(n for n, d in G.nodes_iter(data=True) if flt_func(d)) nx.draw(part_G) plt.savefig("youxiangtu.png") plt.show()
圖
#-*- coding:utf8-*- import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}} road_edges = [('a', 'b'), ('a', 'c'), ('c', 'd')] G.add_nodes_from(road_nodes.iteritems()) G.add_edges_from(road_edges) print G.nodes() print G.edges() print "a's pred ", G.pred['a'] print "b's pred ", G.pred['b'] print "c's pred ", G.pred['c'] print "d's pred ", G.pred['d'] print "a's succ ", G.succ['a'] print "b's succ ", G.succ['b'] print "c's succ ", G.succ['c'] print "d's succ ", G.succ['d'] nx.draw(G) plt.savefig("wuxiangtu.png") plt.draw()
結果
['a', 'c', 'b', 'd'] [('a', 'c'), ('a', 'b'), ('c', 'd')] a's pred {} b's pred {'a': {}} c's pred {'a': {}} d's pred {'c': {}} a's succ {'c': {}, 'b': {}} b's succ {} c's succ {'d': {}} d's succ {}