原理請參考《算法導論》算法
定義一個紅黑樹類函數
template <typename T> class rb_tree { public: typedef struct _rb_type { _rb_type(_rb_type *_left, _rb_type *_right, _rb_type *_p, bool cl, T k) : left(_left), right(_right), p(_p), color(cl), key(k) {} bool color;//true for red, false for black T key; _rb_type *left, *right, *p; }rb_type, *prb_type; rb_tree(T *A, int n) :root(NULL) { for (int i = 0; i < n; i++) this->rb_insert(A[i]); } ~rb_tree() { rb_empty(root); } void left_rotate(prb_type x);//左旋 void right_rotate(prb_type x);//右旋 void rb_insert(T key);//插入 prb_type rb_max(prb_type x); prb_type rb_min(prb_type x); prb_type rb_search(T key);//查找 prb_type rb_successor(T key);//後繼 prb_type rb_predecussor(T key);//前趨 void rb_delete(T key);//刪除 void rb_delete(prb_type z); void rb_empty(prb_type x);//後續所有刪除 prb_type Root(); void rb_show(prb_type x);//顯示,僅測試使用 private: void rb_insert_fixup(prb_type z);//插入後修復 void rb_delete_fixup(prb_type x);//刪除後修復 prb_type root; };
相關成員函數的實現學習
left_rotate成員函數,實現某節點的左旋轉測試
template <typename T> void rb_tree<T>::left_rotate(typename rb_tree<T>::prb_type x) { prb_type y = x->right;//y非空 x->right = y->left; if (y->left) y->left->p = x;//交換子節點 y->p = x->p;//更新父節點 if (x->p == NULL)//將y鏈接到x的父節點 root = y; else { if (x == x->p->left) x->p->left = y; else x->p->right = y; } y->left = x; x->p = y; }
right_rotate成員函數,實現某節點的右旋轉this
template <typename T> void rb_tree<T>::right_rotate(typename rb_tree<T>::prb_type x) { prb_type y = x->left; x->left = y->right; if (y->right) y->right->p = x; y->p = x->p; if (x->p == NULL) root = y; else { if (x == x->p->left) x->p->left = y; else x->p->right = y; } y->right = x; x->p = y; }
rb_insert成員函數,將某個key值插入到紅黑樹中,並修正讓其知足紅黑樹的性質spa
template <typename T> void rb_tree<T>::rb_insert(T key) { prb_type y = NULL, x = root, z = new rb_type(NULL, NULL, NULL, true, key); while (x != NULL) { y = x; if (key < x->key) x = x->left; else x = x->right; } z->p = y; if (y == NULL) root = z; else { if (key < y->key) y->left = z; else y->right = z; } rb_insert_fixup(z); }
rb_insert_fixup成員函數,接上面,根據二叉樹插入方法插入後,修正紅黑樹3d
template <typename T> void rb_tree<T>::rb_insert_fixup(typename rb_tree<T>::prb_type x) { prb_type y; while (x->p && x->p->color) {//紅色 if (x->p == x->p->p->left) {//父節點存在,必定存在祖父節點 y = x->p->p->right; //沒法知足性質4 if (!y || y->color) {//若y爲NULL,默認不存在的節點是黑色 x->p->color = false; if (y) y->color = false; x->p->p->color = true; x = x->p->p;//從新設置z節點 } else if (x == x->p->right) { //沒法知足性質5 x = x->p; left_rotate(x); } if (x->p && x->p->p) {//保證存在 x->p->color = false; x->p->p->color = true; right_rotate(x->p->p); } } else {//和上面左節點相反 y = x->p->p->left; if (!y || y->color) { x->p->color = false; if (y) y->color = false; x->p->p->color = true; x = x->p->p;//從新設置z節點 } else if (x == x->p->left) { x = x->p; right_rotate(x); } if (x->p && x->p->p) { x->p->color = false; x->p->p->color = true; left_rotate(x->p->p); } } } root->color = false; }
rb_search成員函數,根據相關key值,找到對應的節點code
template <typename T> typename rb_tree<T>::prb_type rb_tree<T>::rb_search(T key) { prb_type x = root; while (x != NULL && key != x->key) { if (key < x->key) x = x->left; else x = x->right; } return x; }
如下幾個成員函數,是爲了rb_delete函數做準備,分別是rb_max, rb_min, rb_successor, rb_predecessorblog
rb_max成員函數io
template <typename T> typename rb_tree<T>::prb_type rb_tree<T>::rb_max(typename rb_tree<T>::prb_type x) { if (x == NULL) return NULL; while (x->right) x = x->right; return x; }
rb_min成員函數
template <typename T> typename rb_tree<T>::prb_type rb_tree<T>::rb_min(typename rb_tree<T>::prb_type x) { if (x == NULL) return NULL; while (x->left) x = x->left; return x; }
rb_successor成員函數
template <typename T> typename rb_tree<T>::prb_type rb_tree<T>::rb_successor(T key) { prb_type x = rb_search(key), y; if (x == NULL) return NULL; if (x->right) return rb_min(x->right); y = x->p; while (y != NULL && y->right == x) {//沒有則返回NULL x = y; y = y->p; } return y; }
rb_predecessor成員函數
template <typename T> typename rb_tree<T>::prb_type rb_tree<T>::rb_predecussor(T key) { prb_type x = rb_search(key), y; if (x == NULL) return NULL; if (x->left) return rb_max(x->left); y = x->p; while (y != NULL && y->left == x) { x = y; y = y->p; } return y; }
最後,比較關鍵的刪除函數rb_delete成員函數,實現了重載函數,是爲了最後測試使用
rb_delete成員函數,重載一
template <typename T> void rb_tree<T>::rb_delete(T key) { prb_type z = rb_search(key), y, x; if (z == NULL) return; if (z->left == NULL || z->right == NULL)//y是待刪除的節點 y = z;//z有一個子節點 else y = rb_successor(key);//z有兩個子節點,後繼和前趨保證了y有一個或沒有子節點 if (y->left != NULL) x = y->left; else x = y->right; if (x != NULL) //存在一個子節點,先更正父子關係 x->p = y->p; if (y->p == NULL)//再決定是在左或者右節點 root = x; else { if (y->p->left == y) y->p->left = x; else y->p->right = x; } if (y != z)//處理兩個子節點的交換 z->key = y->key; if (!y->color)//黑色 rb_delete_fixup(x); delete y; }
重載二
template <typename T> void rb_tree<T>::rb_delete(typename rb_tree<T>::prb_type z) { prb_type y, x; if (z == NULL) return; if (z->left == NULL || z->right == NULL)//y是待刪除的節點 y = z;//z有一個子節點 else y = rb_successor(z->key);//z有兩個子節點,後繼和前趨保證了y有一個或沒有子節點 if (y->left != NULL) x = y->left; else x = y->right; if (x != NULL) //存在一個子節點,先更正父子關係 x->p = y->p; if (y->p == NULL)//再決定是在左或者右節點 root = x; else { if (y->p->left == y) y->p->left = x; else y->p->right = x; } if (y != z)//處理兩個子節點的交換 z->key = y->key; if (!y->color)//黑色 rb_delete_fixup(x); delete y; }
rb_delete_fixup成員函數,和插入相似,每一次刪除一個節點,要調整紅黑樹顏色讓其知足紅黑樹的性質(原理和rb_insert_fixup類似,不懂實現的,請認真學習《算法導論》)
template <typename T> void rb_tree<T>::rb_delete_fixup(typename rb_tree<T>::prb_type x) { prb_type w; while (x && x!=root && !x->color) {//黑色 if (x == x->p->left) { w = x->p->right; if (w->color) {//紅色 w->color = false; x->p->color = true; left_rotate(x->p); w = x->p->right; } if ((!w->left && !w->right)|| (!w->left->color && !w->right->color)) {//雙黑 w->color = true; x = x->p; } else { if (!w->right->color) {//單黑 w->left->color = false; w->color = true; right_rotate(w); w = x->p->right; } w->color = x->p->color; x->p->color = false; w->right->color = false; left_rotate(x->p); x = root; } } else {//相反的狀況 w = x->p->left; if (w->color) {//紅色 w->color = false; x->p->color = true; right_rotate(x->p); w = x->p->left; } if ((!w->left && !w->right) || (!w->left->color && !w->right->color)) {//雙黑 w->color = true; x = x->p; } else { if (!w->left->color) {//單黑 w->right->color = false; w->color = true; left_rotate(w); w = x->p->left; } w->color = x->p->color; x->p->color = false; w->left->color = false; right_rotate(x->p); x = root; } } } if (x) x->color = false;//巧妙處理,默認黑 }
rb_empty成員函數,按照後續的遍歷刪除全部的節點
template <typename T> void rb_tree<T>::rb_empty(typename rb_tree<T>::prb_type x) { if (x != NULL) { rb_empty(x->left); rb_empty(x->right); rb_delete(x);//後續保證子葉爲空 rb_show(root);//測試使用 printf("-------------------------------------\n"); } }
爲了測試全部函數是否正確,定義了一些輔助成員函數(可選)
Root成員函數
template <typename T> typename rb_tree<T>::prb_type rb_tree<T>::Root() { return root; }
rb_show成員函數
template <typename T> void rb_tree<T>::rb_show(typename rb_tree<T>::prb_type x) { if (x != NULL) { rb_show(x->left); if (x == root) printf("root: (%s)%d\n", root->color ? "red" : "black", root->key); else printf("(%s)%d\n", x->color ? "red" : "black", x->key); rb_show(x->right); } }
若是要分離模板實現,請提早實例化!!!!
template class rb_tree<int>;
最後的最後,上測試圖吧!
測試一:
數據錄入: 11 2 14 1 7 15 5 8 4
若是結果正確,應該生成《算法導論》中的圖(以下,深色表示黑色,淺色表示紅色)
代碼產生的結果(正確):
測試二:
錄入數據:13 8 17 1 11 15 25 6 22 27
若是結果正確,應該生成如下圖的樣子
代碼產生的結果以下(正確):
測試三:
爲了測試全部函數,那麼以測試一中的數據爲主,而後經過後續逐一刪除,而且查看是否刪除後,函數能正確的調整紅黑樹的顏色
未調用刪除函數前,完整的紅黑樹是如下圖
而後調用rb_empty成員函數後,產生一下結果(每次刪除一個節點,都會顯示樹的狀態和數據,你們花點時間,本身手動刪一次,和下面結果同樣)
全部代碼均通過測試,結果正確!