上一篇文章《Tomcat在SpringBoot中是如何啓動的》從main方法啓動提及,窺探了SpringBoot是如何啓動Tomcat的,在分析Tomcat中咱們重點提到了,Tomcat主要包括2個組件,鏈接器(Connector)和容器(Container)以及他們的內部結構圖,那麼今天咱們來分析下Tomcat中的鏈接器是怎麼設計的以及它的做用是什麼。java
說明:本文tomcat版本是9.0.21,不建議零基礎讀者閱讀。apache
既然是來解析鏈接器(Connector),那麼咱們直接從源碼入手,後面全部源碼我會剔除不重要部分,因此會忽略大部分源碼細節,只關注流程。源碼以下(高能預警,大量代碼):編程
public class Connector extends LifecycleMBeanBase {
public Connector() {
this("org.apache.coyote.http11.Http11NioProtocol");
}
public Connector(String protocol) {
boolean aprConnector = AprLifecycleListener.isAprAvailable() &&
AprLifecycleListener.getUseAprConnector();
if ("HTTP/1.1".equals(protocol) || protocol == null) {
if (aprConnector) {
protocolHandlerClassName = "org.apache.coyote.http11.Http11AprProtocol";
} else {
protocolHandlerClassName = "org.apache.coyote.http11.Http11NioProtocol";
}
} else if ("AJP/1.3".equals(protocol)) {
if (aprConnector) {
protocolHandlerClassName = "org.apache.coyote.ajp.AjpAprProtocol";
} else {
protocolHandlerClassName = "org.apache.coyote.ajp.AjpNioProtocol";
}
} else {
protocolHandlerClassName = protocol;
}
// Instantiate protocol handler
ProtocolHandler p = null;
try {
Class<?> clazz = Class.forName(protocolHandlerClassName);
p = (ProtocolHandler) clazz.getConstructor().newInstance();
} catch (Exception e) {
log.error(sm.getString(
"coyoteConnector.protocolHandlerInstantiationFailed"), e);
} finally {
this.protocolHandler = p;
}
// Default for Connector depends on this system property
setThrowOnFailure(Boolean.getBoolean("org.apache.catalina.startup.EXIT_ON_INIT_FAILURE"));
}
複製代碼
咱們來看看Connector的構造方法,其實只作了一件事情,就是根據協議設置對應的ProtocolHandler
,根據名稱咱們知道,這是協議處理類,因此鏈接器內部的一個重要子模塊就是ProtocolHandler
。tomcat
咱們看到Connector
繼承了LifecycleMBeanBase
,咱們來看看Connector
的最終繼承關係:bash
咱們看到最終實現的是Lifecycle
接口,咱們看看這個接口是何方神聖。我把其接口的註釋拿下來解釋下網絡
/**
* Common interface for component life cycle methods. Catalina components
* may implement this interface (as well as the appropriate interface(s) for
* the functionality they support) in order to provide a consistent mechanism
* to start and stop the component.
* start()
* -----------------------------
* | |
* | init() |
* NEW -»-- INITIALIZING |
* | | | | ------------------«-----------------------
* | | |auto | | |
* | | \|/ start() \|/ \|/ auto auto stop() |
* | | INITIALIZED --»-- STARTING_PREP --»- STARTING --»- STARTED --»--- |
* | | | | |
* | |destroy()| | |
* | --»-----«-- ------------------------«-------------------------------- ^
* | | | |
* | | \|/ auto auto start() |
* | | STOPPING_PREP ----»---- STOPPING ------»----- STOPPED -----»-----
* | \|/ ^ | ^
* | | stop() | | |
* | | -------------------------- | |
* | | | | |
* | | | destroy() destroy() | |
* | | FAILED ----»------ DESTROYING ---«----------------- |
* | | ^ | |
* | | destroy() | |auto |
* | --------»----------------- \|/ |
* | DESTROYED |
* | |
* | stop() |
* ----»-----------------------------»------------------------------
*
* Any state can transition to FAILED.
*
* Calling start() while a component is in states STARTING_PREP, STARTING or
* STARTED has no effect.
*
* Calling start() while a component is in state NEW will cause init() to be
* called immediately after the start() method is entered.
*
* Calling stop() while a component is in states STOPPING_PREP, STOPPING or
* STOPPED has no effect.
*
* Calling stop() while a component is in state NEW transitions the component
* to STOPPED. This is typically encountered when a component fails to start and
* does not start all its sub-components. When the component is stopped, it will
* try to stop all sub-components - even those it didn't start. * * Attempting any other transition will throw {@link LifecycleException}. * * </pre> * The {@link LifecycleEvent}s fired during state changes are defined in the * methods that trigger the changed. No {@link LifecycleEvent}s are fired if the * attempted transition is not valid. 複製代碼
這段註釋翻譯就是,這個接口是提供給組件聲明週期管理的,而且提供了聲明週期流轉圖。這裏咱們只須要知道正常流程便可:app
New--->Init()---->Start()---->Stop()--->Destory()dom
根據上面的生命週期說明,咱們能夠知道鏈接器(Connector
)就是按照如此的聲明週期管理的,因此咱們找到了線索,因此鏈接器確定會先初始化而後再啓動。咱們查看其initInternal()
方法能夠知道鏈接器初始化作了什麼事情,源碼以下:異步
@Override
protected void initInternal() throws LifecycleException {
super.initInternal();
if (protocolHandler == null) {
throw new LifecycleException(
sm.getString("coyoteConnector.protocolHandlerInstantiationFailed"));
}
// Initialize adapter
adapter = new CoyoteAdapter(this);
protocolHandler.setAdapter(adapter);
if (service != null) {
protocolHandler.setUtilityExecutor(service.getServer().getUtilityExecutor());
}
// Make sure parseBodyMethodsSet has a default
if (null == parseBodyMethodsSet) {
setParseBodyMethods(getParseBodyMethods());
}
if (protocolHandler.isAprRequired() && !AprLifecycleListener.isInstanceCreated()) {
throw new LifecycleException(sm.getString("coyoteConnector.protocolHandlerNoAprListener",
getProtocolHandlerClassName()));
}
if (protocolHandler.isAprRequired() && !AprLifecycleListener.isAprAvailable()) {
throw new LifecycleException(sm.getString("coyoteConnector.protocolHandlerNoAprLibrary",
getProtocolHandlerClassName()));
}
if (AprLifecycleListener.isAprAvailable() && AprLifecycleListener.getUseOpenSSL() &&
protocolHandler instanceof AbstractHttp11JsseProtocol) {
AbstractHttp11JsseProtocol<?> jsseProtocolHandler =
(AbstractHttp11JsseProtocol<?>) protocolHandler;
if (jsseProtocolHandler.isSSLEnabled() &&
jsseProtocolHandler.getSslImplementationName() == null) {
// OpenSSL is compatible with the JSSE configuration, so use it if APR is available
jsseProtocolHandler.setSslImplementationName(OpenSSLImplementation.class.getName());
}
}
try {
protocolHandler.init();
} catch (Exception e) {
throw new LifecycleException(
sm.getString("coyoteConnector.protocolHandlerInitializationFailed"), e);
}
}
}
複製代碼
根據上面源碼,咱們發現主要是處理protocolHandler
並初始化它,同時咱們注意到了protocolHandler
設置了一個適配器,咱們看看這個適配器是作啥的,跟蹤源碼以下:socket
/**
* The adapter, used to call the connector.
*
* @param adapter The adapter to associate
*/
public void setAdapter(Adapter adapter);
複製代碼
這個註釋已經說的很直白了,這個適配器就是用來調用鏈接器的。咱們再繼續看看protocolHandler
的初始化方法
/**
* Endpoint that provides low-level network I/O - must be matched to the
* ProtocolHandler implementation (ProtocolHandler using NIO, requires NIO
* Endpoint etc.).
*/
private final AbstractEndpoint<S,?> endpoint;
public void init() throws Exception {
if (getLog().isInfoEnabled()) {
getLog().info(sm.getString("abstractProtocolHandler.init", getName()));
logPortOffset();
}
if (oname == null) {
// Component not pre-registered so register it
oname = createObjectName();
if (oname != null) {
Registry.getRegistry(null, null).registerComponent(this, oname, null);
}
}
if (this.domain != null) {
rgOname = new ObjectName(domain + ":type=GlobalRequestProcessor,name=" + getName());
Registry.getRegistry(null, null).registerComponent(
getHandler().getGlobal(), rgOname, null);
}
String endpointName = getName();
endpoint.setName(endpointName.substring(1, endpointName.length()-1));
endpoint.setDomain(domain);
endpoint.init();
}
複製代碼
這裏出現了一個新的對象,endpoint
,根據註釋咱們能夠知道endpoint
是用來處理網絡IO的,並且必須匹配到指定的子類(好比Nio,就是NioEndPoint處理)。endpoint.init()
實際上就是作一些網絡的配置,而後就是初始化完畢了。根據咱們上面的週期管理,咱們知道init()
後就是start()
,因此咱們查看Connector
的start()
源碼:
protected void startInternal() throws LifecycleException {
// Validate settings before starting
if (getPortWithOffset() < 0) {
throw new LifecycleException(sm.getString(
"coyoteConnector.invalidPort", Integer.valueOf(getPortWithOffset())));
}
setState(LifecycleState.STARTING);
try {
protocolHandler.start();
} catch (Exception e) {
throw new LifecycleException(
sm.getString("coyoteConnector.protocolHandlerStartFailed"), e);
}
}
複製代碼
其實就是主要調用protocolHandler.start()
方法,繼續跟蹤,爲了方便表述,我會把接下來的代碼統一放在一塊兒說明,代碼以下:
//1.類:AbstractProtocol implements ProtocolHandler,
MBeanRegistration
public void start() throws Exception {
// 省略部分代碼
endpoint.start();
}
//2. 類:AbstractEndPoint
public final void start() throws Exception {
// 省略部分代碼
startInternal();
}
/**3.類:NioEndPoint extends AbstractJsseEndpoint<NioChannel,SocketChannel>
* Start the NIO endpoint, creating acceptor, poller threads.
*/
@Override
public void startInternal() throws Exception {
//省略部分代碼
// Start poller thread
poller = new Poller();
Thread pollerThread = new Thread(poller, getName() + "-ClientPoller");
pollerThread.setPriority(threadPriority);
pollerThread.setDaemon(true);
pollerThread.start();
startAcceptorThread();
}
}
複製代碼
到這裏,其實整個啓動代碼就完成了,咱們看到最後是在NioEndPoint
建立了一個Poller
,而且啓動它,這裏須要補充說明下,這裏只是以NioEndPoint爲示列,其實Tomcat 主要提供了三種實現,分別是AprEndPoint
,NioEndPoint
,Nio2EndPoint
,這裏表示了tomcat支持的I/O模型:
APR:採用 Apache 可移植運行庫實現,它根據不一樣操做系統,分別用c重寫了大部分IO和系統線程操做模塊,聽說性能要比其餘模式要好(未實測)。
NIO:非阻塞 I/O
NIO.2:異步 I/O
上述代碼主要是開啓兩個線程,一個是Poller,一個是開啓Acceptor,既然是線程,核心的代碼確定是run方法
,咱們來查看源碼,代碼以下:
//4.類:Acceptor<U> implements Runnable
public void run() {
//省略了部分代碼
U socket = null;
socket = endpoint.serverSocketAccept();
// Configure the socket
if (endpoint.isRunning() && !endpoint.isPaused()) {
// setSocketOptions() will hand the socket off to
// an appropriate processor if successful
//核心邏輯
if (!endpoint.setSocketOptions(socket)) {
endpoint.closeSocket(socket);
}
} else {
endpoint.destroySocket(socket);
}
state = AcceptorState.ENDED;
}
//5.類:NioEndpoint
protected boolean setSocketOptions(SocketChannel socket) {
// Process the connection
//省略部分代碼
try {
// Disable blocking, polling will be used
socket.configureBlocking(false);
Socket sock = socket.socket();
socketProperties.setProperties(sock);
NioSocketWrapper socketWrapper = new NioSocketWrapper(channel, this);
channel.setSocketWrapper(socketWrapper);
socketWrapper.setReadTimeout(getConnectionTimeout());
socketWrapper.setWriteTimeout(getConnectionTimeout());
socketWrapper.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests());
socketWrapper.setSecure(isSSLEnabled());
//核心邏輯
poller.register(channel, socketWrapper);
return true;
}
複製代碼
這裏能夠發現Acceptor
主要就是接受socket
,而後把它註冊到poller
中,咱們繼續看看是如何註冊的。
/**6.類NioEndpoint
* Registers a newly created socket with the poller.
*
* @param socket The newly created socket
* @param socketWrapper The socket wrapper
*/
public void register(final NioChannel socket, final NioSocketWrapper socketWrapper) {
socketWrapper.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into.
PollerEvent r = null;
if (eventCache != null) {
r = eventCache.pop();
}
if (r == null) {
r = new PollerEvent(socket, OP_REGISTER);
} else {
r.reset(socket, OP_REGISTER);
}
addEvent(r);
}
/** 7.類:PollerEvent implements Runnable
public void run() {
//省略部分代碼
socket.getIOChannel().register(socket.getSocketWrapper().getPoller().getSelector(), SelectionKey.OP_READ, socket.getSocketWrapper());
}
複製代碼
這裏發現最終就是採用NIO模型把其註冊到通道中。(這裏涉及NIO網絡編程知識,不瞭解的同窗能夠傳送這裏)。那麼註冊完畢後,咱們看看Poller作了什麼事情。
*/
/**8.類:NioEndPoint內部類 Poller implements Runnable
**/
@Override
public void run() {
// Loop until destroy() is called
while (true) {
//省略部分代碼
Iterator<SelectionKey> iterator =
keyCount > 0 ? selector.selectedKeys().iterator() : null;
// Walk through the collection of ready keys and dispatch
// any active event.
while (iterator != null && iterator.hasNext()) {
SelectionKey sk = iterator.next();
NioSocketWrapper socketWrapper = (NioSocketWrapper) sk.attachment();
// Attachment may be null if another thread has called
// cancelledKey()
if (socketWrapper == null) {
iterator.remove();
} else {
iterator.remove();
//sock處理
processKey(sk, socketWrapper);
}
}
//省略部分代碼
}
複製代碼
這個就是經過selector把以前註冊的事件取出來,從而完成了調用。
//9.類: NioEndPoint內部類 Poller implements Runnable
protected void processKey(SelectionKey sk, NioSocketWrapper socketWrapper) {
//省略大部分代碼
processSocket(socketWrapper, SocketEvent.OPEN_WRITE, true)
}
//10.類:AbstractEndPoint
public boolean processSocket(SocketWrapperBase<S> socketWrapper,
SocketEvent event, boolean dispatch) {
//省略部分代碼
Executor executor = getExecutor();
if (dispatch && executor != null) {
executor.execute(sc);
} else {
sc.run();
}
return true;
}
//11.類:SocketProcessorBase implements Runnable
public final void run() {
synchronized (socketWrapper) {
// It is possible that processing may be triggered for read and
// write at the same time. The sync above makes sure that processing
// does not occur in parallel. The test below ensures that if the
// first event to be processed results in the socket being closed,
// the subsequent events are not processed.
if (socketWrapper.isClosed()) {
return;
}
doRun();
}
}
//類:12.NioEndPoint extends AbstractJsseEndpoint<NioChannel,SocketChannel>
protected void doRun() {
//省略部分代碼
if (handshake == 0) {
SocketState state = SocketState.OPEN;
// Process the request from this socket
if (event == null) {
state = getHandler().process(socketWrapper, SocketEvent.OPEN_READ);
} else {
state = getHandler().process(socketWrapper, event);
}
if (state == SocketState.CLOSED) {
poller.cancelledKey(key, socketWrapper);
}
}
}
複製代碼
Poller
調用的run
方法或者用Executor線程池去執行run()
,最終調用都是各個子EndPoint
中的doRun()
方法,最終會取一個Handler
去處理socketWrapper
。繼續看源碼:
//類:13.AbstractProtocol內部類ConnectionHandler implements AbstractEndpoint.Handler<S>
public SocketState process(SocketWrapperBase<S> wrapper, SocketEvent status) {
//省略部分代碼
state = processor.process(wrapper, status);
return SocketState.CLOSED;
}
//類:14.AbstractProcessorLight implements Processor
public SocketState process(SocketWrapperBase<?> socketWrapper, SocketEvent status)
throws IOException {
//省略部分代碼
state = service(socketWrapper);
return state;
}
複製代碼
這部分源碼代表最終調用的process是經過一個Processor
接口的實現類來完成的,這裏最終也是會調用到各個子類中,那麼這裏的處理器其實就是處理應用協議,咱們能夠查看AbstractProcessorLight
的實現類,分別有AjpProcessor
、Http11Processor
、StreamProcessor
,分別表明tomcat支持三種應用層協議,分別是:
這裏咱們以經常使用的HTTP1.1爲例,繼續看源碼:
//類:15. Http11Processor extends AbstractProcessor
public SocketState service(SocketWrapperBase<?> socketWrapper)
throws IOException {
//省略大部分代碼
getAdapter().service(request, response);
//省略大部分代碼
}
//類:16 CoyoteAdapter implements Adapter
public void service(org.apache.coyote.Request req, org.apache.coyote.Response res)
throws Exception {
Request request = (Request) req.getNote(ADAPTER_NOTES);
Response response = (Response) res.getNote(ADAPTER_NOTES);
postParseSuccess = postParseRequest(req, request, res, response);
if (postParseSuccess) {
//check valves if we support async
request.setAsyncSupported(
connector.getService().getContainer().getPipeline().isAsyncSupported());
// Calling the container
connector.getService().getContainer().getPipeline().getFirst().invoke(
request, response);
}
}
複製代碼
這裏咱們發現協議處理器最終會調用適配器(CoyoteAdapter
),而適配器最終的工做是轉換Request
和Response
對象爲HttpServletRequest
和HttpServletResponse
,從而能夠去調用容器,到這裏整個鏈接器的流程和做用咱們就已經分析完了。
那麼咱們來回憶下整個流程,我畫了一張時序圖來講明:
這張圖包含了兩個流程,一個是組件的初始化,一個是調用的流程。鏈接器(Connector)主要初始化了兩個組件,ProtcoHandler
和EndPoint
,可是咱們從代碼結構發現,他們兩個是父子關係,也就是說ProtcoHandler
包含了EndPoint
。後面的流程就是各個子組件的調用鏈關係,總結來講就是Acceptor
負責接收請求,而後註冊到Poller
,Poller
負責處理請求,而後調用processor
處理器來處理,最後把請求轉成符合Servlet
規範的request
和response
去調用容器(Container
)。
咱們流程梳理清楚了,接下來咱們來結構化的梳理下:
回到鏈接器(Connector
)是源碼,咱們發現,上述說的模塊只有ProtocolHandler
和Adapter
兩個屬於鏈接器中,也就是說,鏈接器只包含了這兩大子模塊,那麼後續的EndPoint
、Acceptor
、Poller
、Processor
都是ProtocolHandler
的子模塊。 而Acceptor
和Poller
兩個模塊的核心功能都是在EndPoint
中完成的,因此是其子模塊,而Processor
比較獨立,因此它和EndPoint
是一個級別的子模塊。
咱們用圖來講明下上述的關係:
根據上圖咱們能夠知道,鏈接器主要負責處理鏈接請求,而後經過適配器調用容器。那麼具體流程細化能夠以下:
Acceptor
監聽網絡請求,獲取請求。Poller
獲取到監聽的請求提交線程池進行處理。Processor
根據具體的應用協議(HTTP/AJP)來生成Tomcat Request對象。Adapter
把Request對象轉換成Servlet標準的Request對象,調用容器。咱們從鏈接器的源碼,一步一步解析,分析了鏈接器主要包含了兩大模塊,ProtocolHandler
和Adapter
。ProtocolHandler
主要包含了Endpoint
模塊和Processor
模塊。Endpoint
模塊主要的做用是鏈接的處理,它委託了Acceptor
子模塊進行鏈接的監聽和註冊,委託子模塊Poller
進行鏈接的處理;而Processor
模塊主要是應用協議的處理,最後提交給Adapter
進行對象的轉換,以即可以調用容器(Container)。另外咱們也在分析源碼的過程當中補充了一些額外知識點: