python concurrent.futures

python由於其全局解釋器鎖GIL而沒法經過線程實現真正的平行計算。這個論斷咱們不展開,可是有個概念咱們要說明,IO密集型 vs. 計算密集型。html

IO密集型:讀取文件,讀取網絡套接字頻繁。python

計算密集型:大量消耗CPU的數學與邏輯運算,也就是咱們這裏說的平行計算。網絡

而concurrent.futures模塊,能夠利用multiprocessing實現真正的平行計算。多線程

核心原理是:concurrent.futures會以子進程的形式,平行的運行多個python解釋器,從而令python程序能夠利用多核CPU來提高執行速度。因爲子進程與主解釋器相分離,因此他們的全局解釋器鎖也是相互獨立的。每一個子進程都可以完整的使用一個CPU內核。併發

 

 第一章 concurrent.futures性能闡述app

  • 最大公約數

這個函數是一個計算密集型的函數。異步

# -*- coding:utf-8 -*-
# 求最大公約數
def gcd(pair):
    a, b = pair
    low = min(a, b)
    for i in range(low, 0, -1):
        if a % i == 0 and b % i == 0:
            return i

numbers = [
    (1963309, 2265973), (1879675, 2493670), (2030677, 3814172),
    (1551645, 2229620), (1988912, 4736670), (2198964, 7876293)
]

 

  • 不使用多線程/多進程
import time

start = time.time()
results = list(map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start)

Took 2.507 seconds.

消耗時間是:2.507。socket

 

  • 多線程ThreadPoolExecutor
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
pool = ThreadPoolExecutor(max_workers=2)
results = list(pool.map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start)

Took 2.840 seconds.

消耗時間是:2.840。async

上面說過gcd是一個計算密集型函數,由於GIL的緣由,多線程是沒法提高效率的。同時,線程啓動的時候,有必定的開銷,與線程池進行通訊,也會有開銷,因此這個程序使用了多線程反而更慢了。函數

 

  • 多進程ProcessPoolExecutor
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
pool = ProcessPoolExecutor(max_workers=2)
results = list(pool.map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start)

Took 1.861 seconds.

消耗時間:1.861。

在兩個CPU核心的機器上運行多進程程序,比其餘兩個版本都快。這是由於,ProcessPoolExecutor類會利用multiprocessing模塊所提供的底層機制,完成下列操做:

1)把numbers列表中的每一項輸入數據都傳給map。

2)用pickle模塊對數據進行序列化,將其變成二進制形式。

3)經過本地套接字,將序列化以後的數據從煮解釋器所在的進程,發送到子解釋器所在的進程。

4)在子進程中,用pickle對二進制數據進行反序列化,將其還原成python對象。

5)引入包含gcd函數的python模塊。

6)各個子進程並行的對各自的輸入數據進行計算。

7)對運行的結果進行序列化操做,將其轉變成字節。

8)將這些字節經過socket複製到主進程之中。

9)主進程對這些字節執行反序列化操做,將其還原成python對象。

10)最後,把每一個子進程所求出的計算結果合併到一份列表之中,並返回給調用者。

multiprocessing開銷比較大,緣由就在於:主進程和子進程之間通訊,必須進行序列化和反序列化的操做。

 

 

第二章 concurrent.futures源碼分析

  • Executor

能夠任務Executor是一個抽象類,提供了以下抽象方法submit,map(上面已經使用過),shutdown。值得一提的是Executor實現了__enter__和__exit__使得其對象能夠使用with操做符。關於上下文管理和with操做符詳細請參看這篇博客http://www.cnblogs.com/kangoroo/p/7627167.html

ThreadPoolExecutor和ProcessPoolExecutor繼承了Executor,分別被用來建立線程池和進程池的代碼。

class Executor(object):
    """This is an abstract base class for concrete asynchronous executors."""

    def submit(self, fn, *args, **kwargs):
        """Submits a callable to be executed with the given arguments.

        Schedules the callable to be executed as fn(*args, **kwargs) and returns
        a Future instance representing the execution of the callable.

        Returns:
            A Future representing the given call.
        """
        raise NotImplementedError()

    def map(self, fn, *iterables, **kwargs):
        """Returns a iterator equivalent to map(fn, iter).

        Args:
            fn: A callable that will take as many arguments as there are
                passed iterables.
            timeout: The maximum number of seconds to wait. If None, then there
                is no limit on the wait time.

        Returns:
            An iterator equivalent to: map(func, *iterables) but the calls may
            be evaluated out-of-order.

        Raises:
            TimeoutError: If the entire result iterator could not be generated
                before the given timeout.
            Exception: If fn(*args) raises for any values.
        """
        timeout = kwargs.get('timeout')
        if timeout is not None:
            end_time = timeout + time.time()

        fs = [self.submit(fn, *args) for args in itertools.izip(*iterables)]

        # Yield must be hidden in closure so that the futures are submitted
        # before the first iterator value is required.
        def result_iterator():
            try:
                for future in fs:
                    if timeout is None:
                        yield future.result()
                    else:
                        yield future.result(end_time - time.time())
            finally:
                for future in fs:
                    future.cancel()
        return result_iterator()

    def shutdown(self, wait=True):
        """Clean-up the resources associated with the Executor.

        It is safe to call this method several times. Otherwise, no other
        methods can be called after this one.

        Args:
            wait: If True then shutdown will not return until all running
                futures have finished executing and the resources used by the
                executor have been reclaimed.
        """
        pass

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.shutdown(wait=True)
        return False

下面咱們以線程ProcessPoolExecutor的方式說明其中的各個方法。

 

  • map
map(self, fn, *iterables, **kwargs)

map方法的實例咱們上面已經實現過,值得注意的是,返回的results列表是有序的,順序和*iterables迭代器的順序一致。

這裏咱們使用with操做符,使得當任務執行完成以後,自動執行shutdown函數,而無需編寫相關釋放代碼。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
    results = list(pool.map(gcd, numbers))
print 'results: %s' % results
end = time.time()
print 'Took %.3f seconds.' % (end - start)

產出結果是:

results: [1, 5, 1, 5, 2, 3]
Took 1.617 seconds.

 

  • submit
submit(self, fn, *args, **kwargs)

submit方法用於提交一個可並行的方法,submit方法同時返回一個future實例。

future對象標識這個線程/進程異步進行,並在將來的某個時間執行完成。future實例表示線程/進程狀態的回調。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
futures = list()
with ProcessPoolExecutor(max_workers=2) as pool:
    for pair in numbers:
        future = pool.submit(gcd, pair)
        futures.append(future)
print 'results: %s' % [future.result() for future in futures]
end = time.time()
print 'Took %.3f seconds.' % (end - start)

產出結果是:

results: [1, 5, 1, 5, 2, 3]
Took 2.289 seconds.

 

  • future

submit函數返回future對象,future提供了跟蹤任務執行狀態的方法。好比判斷任務是否執行中future.running(),判斷任務是否執行完成future.done()等等。

as_completed方法傳入futures迭代器和timeout兩個參數

默認timeout=None,阻塞等待任務執行完成,並返回執行完成的future對象迭代器,迭代器是經過yield實現的。 

timeout>0,等待timeout時間,若是timeout時間到仍有任務未能完成,再也不執行並拋出異常TimeoutError

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor, as_completed

start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
    futures = [ pool.submit(gcd, pair) for pair in numbers]
    for future in futures:
        print '執行中:%s, 已完成:%s' % (future.running(), future.done())
    print '#### 分界線 ####'
    for future in as_completed(futures, timeout=2):
        print '執行中:%s, 已完成:%s' % (future.running(), future.done())
end = time.time()
print 'Took %.3f seconds.' % (end - start)

 

  • wait

wait方法接會返回一個tuple(元組),tuple中包含兩個set(集合),一個是completed(已完成的)另一個是uncompleted(未完成的)。

使用wait方法的一個優點就是得到更大的自由度,它接收三個參數FIRST_COMPLETED, FIRST_EXCEPTION和ALL_COMPLETE,默認設置爲ALL_COMPLETED。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor, as_completed, wait, ALL_COMPLETED, FIRST_COMPLETED, FIRST_EXCEPTION

start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
    futures = [ pool.submit(gcd, pair) for pair in numbers]
    for future in futures:
        print '執行中:%s, 已完成:%s' % (future.running(), future.done())
    print '#### 分界線 ####'
    done, unfinished = wait(futures, timeout=2, return_when=ALL_COMPLETED)
    for d in done:
        print '執行中:%s, 已完成:%s' % (d.running(), d.done())
        print d.result()
end = time.time()
print 'Took %.3f seconds.' % (end - start)

因爲設置了ALL_COMPLETED,因此wait等待全部的task執行完成,能夠看到6個任務都執行完成了。

執行中:True, 已完成:False
執行中:True, 已完成:False
執行中:True, 已完成:False
執行中:True, 已完成:False
執行中:False, 已完成:False
執行中:False, 已完成:False
#### 分界線 ####
執行中:False, 已完成:True
執行中:False, 已完成:True
執行中:False, 已完成:True
執行中:False, 已完成:True
執行中:False, 已完成:True
執行中:False, 已完成:True
Took 1.518 seconds.

 

若是咱們將配置改成FIRST_COMPLETED,wait會等待直到第一個任務執行完成,返回當時全部執行成功的任務。這裏並無作併發控制。

重跑,結構以下,能夠看到執行了2個任務。

執行中:True, 已完成:False
執行中:True, 已完成:False
執行中:True, 已完成:False
執行中:True, 已完成:False
執行中:False, 已完成:False
執行中:False, 已完成:False
#### 分界線 ####
執行中:False, 已完成:True
執行中:False, 已完成:True
Took 1.517 seconds.
相關文章
相關標籤/搜索