很奇怪的一場,速切完ABC遇到D題看了半天看不懂。D研究了半天看了會EF發現可作,結果wa了,又回來看D,仍是把本身繞進去。今天補題的時候秒切D(((。
仍是功力不夠。node
給定n,k和字符串s,n爲字符串s的長度。
問是否存在一系列字符串知足\(s=a_1+a_2+…+a_k+a_{k+1}+R(a_k)+R(a_{k-1})+…+R(a_1).\)
其中\(a_i\)爲某一字符串,\(R(a_i)\)是\(a_i\)的轉置。c++
其實就是統計知足迴文條件的字符的數目,若大於k則知足條件。
要注意一個小細節,就是\(a_{k+1}\)不能爲空字符串,wa*1函數
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn = 2e5 + 5; ll read(){ char ch=getchar(); ll x=0,f=1; while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();} while(ch>='0'&&ch<='9') x=x*10+(ch^48),ch=getchar(); return x*f; } int solve(){ string s; ll n = read(), k = read(); cin >> s; if (k == 0) return 1; if (n == 2 * k) return 0; for (int i = 0, j = n - 1; i < j; i++, j--) { if (s[i] != s[j])break; k--; //cout << k << endl; } if (k <= 0) return 1; else return 0; } int main(){ int t;cin>>t; while(t--){ solve() ? puts("YES") : puts("NO"); } }
給了兩個函數:spa
(爲方便表述,如下max與mex均表示集合中的對應元素。)
給定集合和操做次數k,要求每次操做在集合中加入元素\(\lceil \frac{max+mex}{2}\rceil\)
觀察可得:code
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn = 2e5 + 5; ll read(){ char ch=getchar(); ll x=0,f=1; while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();} while(ch>='0'&&ch<='9') x=x*10+(ch^48),ch=getchar(); return x* void solve(){ ll n = read(), k = read(); ll maxx = 0, temp; set<ll> s; map<ll, bool> mp; for (int i = 1; i <= n; i++) {temp = read(); s.insert(temp); maxx = max(maxx, temp);} int cnt = 0; while (s.count(cnt)){cnt++;} //cout << cnt << endl; if (cnt >= n) cout << n + k << endl; else if (k && !s.count((maxx + cnt + 1)/2)) { cout << n + 1 << endl; } else cout << n << endl; } int main(){ int t;cin>>t; while(t--){ solve(); } }
大意就是xy座標軸上分別有n個點,將x軸與y軸上一點配對,求距離的最小值。
切比雪夫定理的直接應用。貪心便可。ci
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn = 1e5 + 5; ll read(){ char ch=getchar(); ll x=0,f=1; while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();} while(ch>='0'&&ch<='9') x=x*10+(ch^48),ch=getchar(); return x*f; } double dis(ll a, ll b) { return sqrt(a * a + b * b); } void solve(){ ll n = read(), x[maxn], y[maxn]; ll xx, yy; for (int i = 0, j = 0; i + j < n * 2;) { xx = read(), yy = read(); if(xx == 0ll) {y[j] = abs(yy); j++;} if(yy == 0ll) {x[i] = abs(xx); i++;} //cout << i << " " << j << endl; } sort(x, x + n); sort(y, y + n); double ans = 0; for (int i = 0; i < n; i++) { ans += dis(x[i], y[i]); } printf("%.10lf\n", ans); } int main(){ int t;cin>>t; while(t--){ solve(); } }
最麻煩的一題,其實補題完以後發現還好。字符串
給定一串整數,表示高度。看做山。
有綿亙不絕的山,Q只會下山,D只會上山,Q和D不能相撞,誰沒路走誰輸,Q先走,求誰贏。
本質是披着博弈殼子的模擬題。get
分析:string
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn = 1e5 + 5; ll read(){ char ch=getchar(); ll x=0,f=1; while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();} while(ch>='0'&&ch<='9') x=x*10+(ch^48),ch=getchar(); return x*f; } struct node { int l, r; }m[maxn]; bool solve(){ ll n = read(), a[maxn], h[maxn], maxx = 0; for (int i = 1; i <= n; i++) a[i] = read(); for (int i = 2; i <= n; i++) if (a[i] > a[i-1]) m[i].l = m[i-1].l + 1; for (int i = n-1; i >= 1; i--) if (a[i] > a[i+1]) m[i].r = m[i+1].r + 1; // for (int i = 1; i <= n; i++) cout << i << " " << m[i].l << " " << m[i].r << endl; for (int i = 1; i <= n; i++) { h[i] = max(m[i].l, m[i].r); maxx = max(maxx, h[i]); } if (maxx % 2 == 0) { int cnt = 0, pos; for (int i = 1; i <= n; i++) { if (h[i] == maxx) { pos = i; cnt++; } } if(cnt > 1)return 0; if(m[pos].l == m[pos].r) return 1; return 0; } return 0; } int main(){ solve() ? puts("1") : puts("0"); }