1、前言java
在鎖框架中,AbstractQueuedSynchronizer抽象類能夠絕不誇張的說,佔據着核心地位,它提供了一個基於FIFO隊列,能夠用於構建鎖或者其餘相關同步裝置的基礎框架。因此頗有必要好好分析。node
2、AbstractQueuedSynchronizer數據結構數據結構
分析類,首先就要分析底層採用了何種數據結構,抓住核心點進行分析,通過分析可知,AbstractQueuedSynchronizer類的數據結構以下app
說明:AbstractQueuedSynchronizer類底層的數據結構是使用雙向鏈表,是隊列的一種實現,故也可當作是隊列,其中Sync queue,即同步隊列,是雙向鏈表,包括head結點和tail結點,head結點主要用做後續的調度。而Condition queue不是必須的,其是一個單向鏈表,只有當使用Condition時,纔會存在此單向鏈表。而且可能會有多個Condition queue。框架
3、AbstractQueuedSynchronizer源碼分析ide
3.1 類的繼承關係 函數
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable
說明:從類繼承關係可知,AbstractQueuedSynchronizer繼承自AbstractOwnableSynchronizer抽象類,而且實現了Serializable接口,能夠進行序列化。而AbstractOwnableSynchronizer抽象類的源碼以下 源碼分析
public abstract class AbstractOwnableSynchronizer implements java.io.Serializable { // 版本序列號 private static final long serialVersionUID = 3737899427754241961L; // 構造函數 protected AbstractOwnableSynchronizer() { } // 獨佔模式下的線程 private transient Thread exclusiveOwnerThread; // 設置獨佔線程 protected final void setExclusiveOwnerThread(Thread thread) { exclusiveOwnerThread = thread; } // 獲取獨佔線程 protected final Thread getExclusiveOwnerThread() { return exclusiveOwnerThread; } }
說明:AbstractOwnableSynchronizer抽象類中,能夠設置獨佔資源線程和獲取獨佔資源線程。分別爲setExclusiveOwnerThread與getExclusiveOwnerThread方法,這兩個方法會被子類調用。測試
3.2 類的內部類ui
AbstractQueuedSynchronizer類有兩個內部類,分別爲Node類與ConditionObject類。下面分別作介紹。
1. Node類
static final class Node { // 模式,分爲共享與獨佔 // 共享模式 static final Node SHARED = new Node(); // 獨佔模式 static final Node EXCLUSIVE = null; // 結點狀態 // CANCELLED,值爲1,表示當前的線程被取消 // SIGNAL,值爲-1,表示當前節點的後繼節點包含的線程須要運行,也就是unpark // CONDITION,值爲-2,表示當前節點在等待condition,也就是在condition隊列中 // PROPAGATE,值爲-3,表示當前場景下後續的acquireShared可以得以執行 // 值爲0,表示當前節點在sync隊列中,等待着獲取鎖 static final int CANCELLED = 1; static final int SIGNAL = -1; static final int CONDITION = -2; static final int PROPAGATE = -3; // 結點狀態 volatile int waitStatus; // 前驅結點 volatile Node prev; // 後繼結點 volatile Node next; // 結點所對應的線程 volatile Thread thread; // 下一個等待者 Node nextWaiter; // 結點是否在共享模式下等待 final boolean isShared() { return nextWaiter == SHARED; } // 獲取前驅結點,若前驅結點爲空,拋出異常 final Node predecessor() throws NullPointerException { // 保存前驅結點 Node p = prev; if (p == null) // 前驅結點爲空,拋出異常 throw new NullPointerException(); else // 前驅結點不爲空,返回 return p; } // 無參構造函數 Node() { // Used to establish initial head or SHARED marker } // 構造函數 Node(Thread thread, Node mode) { // Used by addWaiter this.nextWaiter = mode; this.thread = thread; } // 構造函數 Node(Thread thread, int waitStatus) { // Used by Condition this.waitStatus = waitStatus; this.thread = thread; } }
說明:每一個線程被阻塞的線程都會被封裝成一個Node結點,放入隊列。每一個節點包含了一個Thread類型的引用,而且每一個節點都存在一個狀態,具體狀態以下。
① CANCELLED,值爲1,表示當前的線程被取消。
② SIGNAL,值爲-1,表示當前節點的後繼節點包含的線程須要運行,須要進行unpark操做。
③ CONDITION,值爲-2,表示當前節點在等待condition,也就是在condition queue中。
④ PROPAGATE,值爲-3,表示當前場景下後續的acquireShared可以得以執行。
⑤ 值爲0,表示當前節點在sync queue中,等待着獲取鎖。
2. ConditionObject類
// 內部類 public class ConditionObject implements Condition, java.io.Serializable { // 版本號 private static final long serialVersionUID = 1173984872572414699L; /** First node of condition queue. */ // condition隊列的頭結點 private transient Node firstWaiter; /** Last node of condition queue. */ // condition隊列的尾結點 private transient Node lastWaiter; /** * Creates a new {@code ConditionObject} instance. */ // 構造函數 public ConditionObject() { } // Internal methods /** * Adds a new waiter to wait queue. * @return its new wait node */ // 添加新的waiter到wait隊列 private Node addConditionWaiter() { // 保存尾結點 Node t = lastWaiter; // If lastWaiter is cancelled, clean out. if (t != null && t.waitStatus != Node.CONDITION) { // 尾結點不爲空,而且尾結點的狀態不爲CONDITION // 清除狀態爲CONDITION的結點 unlinkCancelledWaiters(); // 將最後一個結點從新賦值給t t = lastWaiter; } // 新建一個結點 Node node = new Node(Thread.currentThread(), Node.CONDITION); if (t == null) // 尾結點爲空 // 設置condition隊列的頭結點 firstWaiter = node; else // 尾結點不爲空 // 設置爲節點的nextWaiter域爲node結點 t.nextWaiter = node; // 更新condition隊列的尾結點 lastWaiter = node; return node; } /** * Removes and transfers nodes until hit non-cancelled one or * null. Split out from signal in part to encourage compilers * to inline the case of no waiters. * @param first (non-null) the first node on condition queue */ private void doSignal(Node first) { // 循環 do { if ( (firstWaiter = first.nextWaiter) == null) // 該節點的nextWaiter爲空 // 設置尾結點爲空 lastWaiter = null; // 設置first結點的nextWaiter域 first.nextWaiter = null; } while (!transferForSignal(first) && (first = firstWaiter) != null); // 將結點從condition隊列轉移到sync隊列失敗而且condition隊列中的頭結點不爲空,一直循環 } /** * Removes and transfers all nodes. * @param first (non-null) the first node on condition queue */ private void doSignalAll(Node first) { // condition隊列的頭結點尾結點都設置爲空 lastWaiter = firstWaiter = null; // 循環 do { // 獲取first結點的nextWaiter域結點 Node next = first.nextWaiter; // 設置first結點的nextWaiter域爲空 first.nextWaiter = null; // 將first結點從condition隊列轉移到sync隊列 transferForSignal(first); // 從新設置first first = next; } while (first != null); } /** * Unlinks cancelled waiter nodes from condition queue. * Called only while holding lock. This is called when * cancellation occurred during condition wait, and upon * insertion of a new waiter when lastWaiter is seen to have * been cancelled. This method is needed to avoid garbage * retention in the absence of signals. So even though it may * require a full traversal, it comes into play only when * timeouts or cancellations occur in the absence of * signals. It traverses all nodes rather than stopping at a * particular target to unlink all pointers to garbage nodes * without requiring many re-traversals during cancellation * storms. */ // 從condition隊列中清除狀態爲CANCEL的結點 private void unlinkCancelledWaiters() { // 保存condition隊列頭結點 Node t = firstWaiter; Node trail = null; while (t != null) { // t不爲空 // 下一個結點 Node next = t.nextWaiter; if (t.waitStatus != Node.CONDITION) { // t結點的狀態不爲CONDTION狀態 // 設置t節點的額nextWaiter域爲空 t.nextWaiter = null; if (trail == null) // trail爲空 // 從新設置condition隊列的頭結點 firstWaiter = next; else // trail不爲空 // 設置trail結點的nextWaiter域爲next結點 trail.nextWaiter = next; if (next == null) // next結點爲空 // 設置condition隊列的尾結點 lastWaiter = trail; } else // t結點的狀態爲CONDTION狀態 // 設置trail結點 trail = t; // 設置t結點 t = next; } } // public methods /** * Moves the longest-waiting thread, if one exists, from the * wait queue for this condition to the wait queue for the * owning lock. * * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 喚醒一個等待線程。若是全部的線程都在等待此條件,則選擇其中的一個喚醒。在從 await 返回以前,該線程必須從新獲取鎖。 public final void signal() { if (!isHeldExclusively()) // 不被當前線程獨佔,拋出異常 throw new IllegalMonitorStateException(); // 保存condition隊列頭結點 Node first = firstWaiter; if (first != null) // 頭結點不爲空 // 喚醒一個等待線程 doSignal(first); } /** * Moves all threads from the wait queue for this condition to * the wait queue for the owning lock. * * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 喚醒全部等待線程。若是全部的線程都在等待此條件,則喚醒全部線程。在從 await 返回以前,每一個線程都必須從新獲取鎖。 public final void signalAll() { if (!isHeldExclusively()) // 不被當前線程獨佔,拋出異常 throw new IllegalMonitorStateException(); // 保存condition隊列頭結點 Node first = firstWaiter; if (first != null) // 頭結點不爲空 // 喚醒全部等待線程 doSignalAll(first); } /** * Implements uninterruptible condition wait. * <ol> * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * </ol> */ // 等待,當前線程在接到信號以前一直處於等待狀態,不響應中斷 public final void awaitUninterruptibly() { // 添加一個結點到等待隊列 Node node = addConditionWaiter(); // 獲取釋放的狀態 int savedState = fullyRelease(node); boolean interrupted = false; while (!isOnSyncQueue(node)) { // // 阻塞當前線程 LockSupport.park(this); if (Thread.interrupted()) // 當前線程被中斷 // 設置interrupted狀態 interrupted = true; } if (acquireQueued(node, savedState) || interrupted) // selfInterrupt(); } /* * For interruptible waits, we need to track whether to throw * InterruptedException, if interrupted while blocked on * condition, versus reinterrupt current thread, if * interrupted while blocked waiting to re-acquire. */ /** Mode meaning to reinterrupt on exit from wait */ private static final int REINTERRUPT = 1; /** Mode meaning to throw InterruptedException on exit from wait */ private static final int THROW_IE = -1; /** * Checks for interrupt, returning THROW_IE if interrupted * before signalled, REINTERRUPT if after signalled, or * 0 if not interrupted. */ private int checkInterruptWhileWaiting(Node node) { return Thread.interrupted() ? (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 0; } /** * Throws InterruptedException, reinterrupts current thread, or * does nothing, depending on mode. */ private void reportInterruptAfterWait(int interruptMode) throws InterruptedException { if (interruptMode == THROW_IE) throw new InterruptedException(); else if (interruptMode == REINTERRUPT) selfInterrupt(); } /** * Implements interruptible condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled or interrupted. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * </ol> */ // // 等待,當前線程在接到信號或被中斷以前一直處於等待狀態 public final void await() throws InterruptedException { if (Thread.interrupted()) // 當前線程被中斷,拋出異常 throw new InterruptedException(); // 在wait隊列上添加一個結點 Node node = addConditionWaiter(); // int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { // 阻塞當前線程 LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 檢查結點等待時的中斷類型 break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) // clean up if cancelled unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); } /** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * </ol> */ // 等待,當前線程在接到信號、被中斷或到達指定等待時間以前一直處於等待狀態 public final long awaitNanos(long nanosTimeout) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); final long deadline = System.nanoTime() + nanosTimeout; int interruptMode = 0; while (!isOnSyncQueue(node)) { if (nanosTimeout <= 0L) { transferAfterCancelledWait(node); break; } if (nanosTimeout >= spinForTimeoutThreshold) LockSupport.parkNanos(this, nanosTimeout); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; nanosTimeout = deadline - System.nanoTime(); } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); return deadline - System.nanoTime(); } /** * Implements absolute timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */ // 等待,當前線程在接到信號、被中斷或到達指定最後期限以前一直處於等待狀態 public final boolean awaitUntil(Date deadline) throws InterruptedException { long abstime = deadline.getTime(); if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); boolean timedout = false; int interruptMode = 0; while (!isOnSyncQueue(node)) { if (System.currentTimeMillis() > abstime) { timedout = transferAfterCancelledWait(node); break; } LockSupport.parkUntil(this, abstime); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); return !timedout; } /** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */ // 等待,當前線程在接到信號、被中斷或到達指定等待時間以前一直處於等待狀態。此方法在行爲上等效於:awaitNanos(unit.toNanos(time)) > 0 public final boolean await(long time, TimeUnit unit) throws InterruptedException { long nanosTimeout = unit.toNanos(time); if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); final long deadline = System.nanoTime() + nanosTimeout; boolean timedout = false; int interruptMode = 0; while (!isOnSyncQueue(node)) { if (nanosTimeout <= 0L) { timedout = transferAfterCancelledWait(node); break; } if (nanosTimeout >= spinForTimeoutThreshold) LockSupport.parkNanos(this, nanosTimeout); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; nanosTimeout = deadline - System.nanoTime(); } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); return !timedout; } // support for instrumentation /** * Returns true if this condition was created by the given * synchronization object. * * @return {@code true} if owned */ final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { return sync == AbstractQueuedSynchronizer.this; } /** * Queries whether any threads are waiting on this condition. * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}. * * @return {@code true} if there are any waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 查詢是否有正在等待此條件的任何線程 protected final boolean hasWaiters() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); for (Node w = firstWaiter; w != null; w = w.nextWaiter) { if (w.waitStatus == Node.CONDITION) return true; } return false; } /** * Returns an estimate of the number of threads waiting on * this condition. * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}. * * @return the estimated number of waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 返回正在等待此條件的線程數估計值 protected final int getWaitQueueLength() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int n = 0; for (Node w = firstWaiter; w != null; w = w.nextWaiter) { if (w.waitStatus == Node.CONDITION) ++n; } return n; } /** * Returns a collection containing those threads that may be * waiting on this Condition. * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}. * * @return the collection of threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */ // 返回包含那些可能正在等待此條件的線程集合 protected final Collection<Thread> getWaitingThreads() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); ArrayList<Thread> list = new ArrayList<Thread>(); for (Node w = firstWaiter; w != null; w = w.nextWaiter) { if (w.waitStatus == Node.CONDITION) { Thread t = w.thread; if (t != null) list.add(t); } } return list; } }
說明:此類實現了Condition接口,Condition接口定義了條件操做規範,具體以下
public interface Condition { // 等待,當前線程在接到信號或被中斷以前一直處於等待狀態 void await() throws InterruptedException; // 等待,當前線程在接到信號以前一直處於等待狀態,不響應中斷 void awaitUninterruptibly(); //等待,當前線程在接到信號、被中斷或到達指定等待時間以前一直處於等待狀態 long awaitNanos(long nanosTimeout) throws InterruptedException; // 等待,當前線程在接到信號、被中斷或到達指定等待時間以前一直處於等待狀態。此方法在行爲上等效於:awaitNanos(unit.toNanos(time)) > 0 boolean await(long time, TimeUnit unit) throws InterruptedException; // 等待,當前線程在接到信號、被中斷或到達指定最後期限以前一直處於等待狀態 boolean awaitUntil(Date deadline) throws InterruptedException; // 喚醒一個等待線程。若是全部的線程都在等待此條件,則選擇其中的一個喚醒。在從 await 返回以前,該線程必須從新獲取鎖。 void signal(); // 喚醒全部等待線程。若是全部的線程都在等待此條件,則喚醒全部線程。在從 await 返回以前,每一個線程都必須從新獲取鎖。 void signalAll(); }
說明:Condition接口中定義了await、signal函數,用來等待條件、釋放條件。以後會詳細分析CondtionObject的源碼。
3.3 類的屬性
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { // 版本號 private static final long serialVersionUID = 7373984972572414691L; // 頭結點 private transient volatile Node head; // 尾結點 private transient volatile Node tail; // 狀態 private volatile int state; // 自旋時間 static final long spinForTimeoutThreshold = 1000L; // Unsafe類實例 private static final Unsafe unsafe = Unsafe.getUnsafe(); // state內存偏移地址 private static final long stateOffset; // head內存偏移地址 private static final long headOffset; // state內存偏移地址 private static final long tailOffset; // tail內存偏移地址 private static final long waitStatusOffset; // next內存偏移地址 private static final long nextOffset; // 靜態初始化塊 static { try { stateOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("state")); headOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("head")); tailOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("tail")); waitStatusOffset = unsafe.objectFieldOffset (Node.class.getDeclaredField("waitStatus")); nextOffset = unsafe.objectFieldOffset (Node.class.getDeclaredField("next")); } catch (Exception ex) { throw new Error(ex); } } }
說明:屬性中包含了頭結點head,尾結點tail,狀態state、自旋時間spinForTimeoutThreshold,還有AbstractQueuedSynchronizer抽象的屬性在內存中的偏移地址,經過該偏移地址,能夠獲取和設置該屬性的值,同時還包括一個靜態初始化塊,用於加載內存偏移地址。
3.4 類的構造函數
protected AbstractQueuedSynchronizer() { }
說明:此類構造函數爲從抽象構造函數,供子類調用。
3.5 類的核心函數
1. acquire函數
該函數以獨佔模式獲取(資源),忽略中斷,即線程在aquire過程當中,中斷此線程是無效的。源碼以下
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
由上述源碼能夠知道,當一個線程調用acquire時,調用方法流程以下。
說明:
① 首先調用tryAcquire函數,調用此方法的線程會試圖在獨佔模式下獲取對象狀態。此方法應該查詢是否容許它在獨佔模式下獲取對象狀態,若是容許,則獲取它。在AbstractQueuedSynchronizer源碼中默認會拋出一個異常,即須要子類去重寫此函數完成本身的邏輯。以後會進行分析。
② 若tryAcquire失敗,則調用addWaiter函數,addWaiter函數完成的功能是將調用此方法的線程封裝成爲一個結點並放入Sync queue。
③ 調用acquireQueued函數,此函數完成的功能是Sync queue中的結點不斷嘗試獲取資源,若成功,則返回true,不然,返回false。
因爲tryAcquire默認實現是拋出異常,因此此時,不進行分析,以後會結合一個例子進行分析。
首先分析addWaiter函數
// 添加等待者 private Node addWaiter(Node mode) { // 新生成一個結點,默認爲獨佔模式 Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure // 保存尾結點 Node pred = tail; if (pred != null) { // 尾結點不爲空,即已經被初始化 // 將node結點的prev域鏈接到尾結點 node.prev = pred; if (compareAndSetTail(pred, node)) { // 比較pred是否爲尾結點,是則將尾結點設置爲node // 設置尾結點的next域爲node pred.next = node; return node; // 返回新生成的結點 } } enq(node); // 尾結點爲空(即尚未被初始化過),或者是compareAndSetTail操做失敗,則入隊列 return node; }
說明:addWaiter函數使用快速添加的方式往sync queue尾部添加結點,若是sync queue隊列尚未初始化,則會使用enq插入隊列中,enq方法源碼以下
// 入隊列 private Node enq(final Node node) { for (;;) { // 無限循環,確保結點可以成功入隊列 // 保存尾結點 Node t = tail; if (t == null) { // 尾結點爲空,即還沒被初始化 if (compareAndSetHead(new Node())) // 頭結點爲空,並設置頭結點爲新生成的結點 tail = head; // 頭結點與尾結點都指向同一個新生結點 } else { // 尾結點不爲空,即已經被初始化過 // 將node結點的prev域鏈接到尾結點 node.prev = t; if (compareAndSetTail(t, node)) { // 比較結點t是否爲尾結點,如果則將尾結點設置爲node // 設置尾結點的next域爲node t.next = node; return t; // 返回尾結點 } } } }
說明:enq函數會使用無限循環來確保節點的成功插入。
如今,分析acquireQueue函數。其源碼以下
// sync隊列中的結點在獨佔且忽略中斷的模式下獲取(資源) final boolean acquireQueued(final Node node, int arg) { // 標誌 boolean failed = true; try { // 中斷標誌 boolean interrupted = false; for (;;) { // 無限循環 // 獲取node節點的前驅結點 final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { // 前驅爲頭結點而且成功得到鎖 setHead(node); // 設置頭結點 p.next = null; // help GC failed = false; // 設置標誌 return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
說明:首先獲取當前節點的前驅節點,若是前驅節點是頭結點而且可以獲取(資源),表明該當前節點可以佔有鎖,設置頭結點爲當前節點,返回。不然,調用shouldParkAfterFailedAcquire和parkAndCheckInterrupt函數,首先,咱們看shouldParkAfterFailedAcquire函數,代碼以下
// 當獲取(資源)失敗後,檢查而且更新結點狀態 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { // 獲取前驅結點的狀態 int ws = pred.waitStatus; if (ws == Node.SIGNAL) // 狀態爲SIGNAL,爲-1 /* * This node has already set status asking a release * to signal it, so it can safely park. */ // 能夠進行park操做 return true; if (ws > 0) { // 表示狀態爲CANCELLED,爲1 /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); // 找到pred結點前面最近的一個狀態不爲CANCELLED的結點 // 賦值pred結點的next域 pred.next = node; } else { // 爲PROPAGATE -3 或者是0 表示無狀態,(爲CONDITION -2時,表示此節點在condition queue中) /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ // 比較並設置前驅結點的狀態爲SIGNAL compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } // 不能進行park操做 return false; }
說明:只有當該節點的前驅結點的狀態爲SIGNAL時,才能夠對該結點所封裝的線程進行park操做。不然,將不能進行park操做。再看parkAndCheckInterrupt函數,源碼以下
// 進行park操做而且返回該線程是否被中斷 private final boolean parkAndCheckInterrupt() { // 在許可可用以前禁用當前線程,而且設置了blocker LockSupport.park(this); return Thread.interrupted(); // 當前線程是否已被中斷,並清除中斷標記位 }
說明:parkAndCheckInterrupt函數裏的邏輯是首先執行park操做,即禁用當前線程,而後返回該線程是否已經被中斷。再看final塊中的cancelAcquire函數,其源碼以下
// 取消繼續獲取(資源) private void cancelAcquire(Node node) { // Ignore if node doesn't exist // node爲空,返回 if (node == null) return; // 設置node結點的thread爲空 node.thread = null; // Skip cancelled predecessors // 保存node的前驅結點 Node pred = node.prev; while (pred.waitStatus > 0) // 找到node前驅結點中第一個狀態小於0的結點,即不爲CANCELLED狀態的結點 node.prev = pred = pred.prev; // predNext is the apparent node to unsplice. CASes below will // fail if not, in which case, we lost race vs another cancel // or signal, so no further action is necessary. // 獲取pred結點的下一個結點 Node predNext = pred.next; // Can use unconditional write instead of CAS here. // After this atomic step, other Nodes can skip past us. // Before, we are free of interference from other threads. // 設置node結點的狀態爲CANCELLED node.waitStatus = Node.CANCELLED; // If we are the tail, remove ourselves. if (node == tail && compareAndSetTail(node, pred)) { // node結點爲尾結點,則設置尾結點爲pred結點 // 比較並設置pred結點的next節點爲null compareAndSetNext(pred, predNext, null); } else { // node結點不爲尾結點,或者比較設置不成功 // If successor needs signal, try to set pred's next-link // so it will get one. Otherwise wake it up to propagate. int ws; if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) { // (pred結點不爲頭結點,而且pred結點的狀態爲SIGNAL)或者 // pred結點狀態小於等於0,而且比較並設置等待狀態爲SIGNAL成功,而且pred結點所封裝的線程不爲空 // 保存結點的後繼 Node next = node.next; if (next != null && next.waitStatus <= 0) // 後繼不爲空而且後繼的狀態小於等於0 compareAndSetNext(pred, predNext, next); // 比較並設置pred.next = next; } else { unparkSuccessor(node); // 釋放node的前一個結點 } node.next = node; // help GC } }
說明:該函數完成的功能就是取消當前線程對資源的獲取,即設置該結點的狀態爲CANCELLED,接着咱們再看unparkSuccessor函數,源碼以下
// 釋放後繼結點 private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ // 獲取node結點的等待狀態 int ws = node.waitStatus; if (ws < 0) // 狀態值小於0,爲SIGNAL -1 或 CONDITION -2 或 PROPAGATE -3 // 比較而且設置結點等待狀態,設置爲0 compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ // 獲取node節點的下一個結點 Node s = node.next; if (s == null || s.waitStatus > 0) { // 下一個結點爲空或者下一個節點的等待狀態大於0,即爲CANCELLED // s賦值爲空 s = null; // 從尾結點開始從後往前開始遍歷 for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) // 找到等待狀態小於等於0的結點,找到最前的狀態小於等於0的結點 // 保存結點 s = t; } if (s != null) // 該結點不爲爲空,釋放許可 LockSupport.unpark(s.thread); }
說明:該函數的做用就是爲了釋放node節點的後繼結點。
對於cancelAcquire與unparkSuccessor函數,以下示意圖能夠清晰的表示。
說明:其中node爲參數,在執行完cancelAcquire函數後的效果就是unpark了s結點所包含的t4線程。
如今,再來看acquireQueued函數的整個的邏輯。邏輯以下
① 判斷結點的前驅是否爲head而且是否成功獲取(資源)。
② 若步驟①均知足,則設置結點爲head,以後會判斷是否finally模塊,而後返回。
③ 若步驟①不知足,則判斷是否須要park當前線程,是否須要park當前線程的邏輯是判斷結點的前驅結點的狀態是否爲SIGNAL,如果,則park當前結點,不然,不進行park操做。
④ 若park了當前線程,以後某個線程對本線程unpark後,而且本線程也得到機會運行。那麼,將會繼續進行步驟①的判斷。
2. release
以獨佔模式釋放對象,其源碼以下
public final boolean release(int arg) { if (tryRelease(arg)) { // 釋放成功 // 保存頭結點 Node h = head; if (h != null && h.waitStatus != 0) // 頭結點不爲空而且頭結點狀態不爲0 unparkSuccessor(h); //釋放頭結點的後繼結點 return true; } return false; }
說明:其中,tryRelease的默認實現是拋出異常,須要具體的子類實現,若是tryRelease成功,那麼若是頭結點不爲空而且頭結點的狀態不爲0,則釋放頭結點的後繼結點,unparkSuccessor函數已經分析過,再也不累贅。
對於其餘函數咱們也能夠分析,與前面分析的函數大同小異,因此,再也不累贅。
4、示例分析
1. 示例一
藉助下面示例來分析AbstractQueuedSyncrhonizer內部的工做機制。示例源碼以下
package com.hust.grid.leesf.abstractqueuedsynchronizer; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; class MyThread extends Thread { private Lock lock; public MyThread(String name, Lock lock) { super(name); this.lock = lock; } public void run () { lock.lock(); try { System.out.println(Thread.currentThread() + " running"); } finally { lock.unlock(); } } } public class AbstractQueuedSynchonizerDemo { public static void main(String[] args) { Lock lock = new ReentrantLock(); MyThread t1 = new MyThread("t1", lock); MyThread t2 = new MyThread("t2", lock); t1.start(); t2.start(); } }
運行結果(可能的一種):
Thread[t1,5,main] running
Thread[t2,5,main] running
結果分析:從示例可知,線程t1與t2共用了一把鎖,即同一個lock。可能會存在以下一種時序。
說明:首先線程t1先執行lock.lock操做,而後t2執行lock.lock操做,而後t1執行lock.unlock操做,最後t2執行lock.unlock操做。基於這樣的時序,分析AbstractQueuedSynchronizer內部的工做機制。
① t1線程調用lock.lock函數,其函數調用順序以下,只給出了主要的函數調用。
說明:其中,前面的部分表示哪一個類,後面是具體的類中的哪一個方法,AQS表示AbstractQueuedSynchronizer類,AOS表示AbstractOwnableSynchronizer類。
② t2線程調用lock.lock函數,其函數調用順序以下,只給出了主要的函數調用。
說明:通過一系列的函數調用,最後達到的狀態是禁用t2線程,由於調用了LockSupport.lock。
③ t1線程調用lock.unlock,其函數調用順序以下,只給出了主要的函數調用。
說明:t1線程中調用lock.unlock後,通過一系列的調用,最終的狀態是釋放了許可,由於調用了LockSupport.unpark。這時,t2線程就能夠繼續運行了。此時,會繼續恢復t2線程運行環境,繼續執行LockSupport.park後面的語句,即進一步調用以下。
說明:在上一步調用了LockSupport.unpark後,t2線程恢復運行,則運行parkAndCheckInterrupt,以後,繼續運行acquireQueued函數,最後達到的狀態是頭結點head與尾結點tail均指向了t2線程所在的結點,而且以前的頭結點已經從sync隊列中斷開了。
④ t2線程調用lock.unlock,其函數調用順序以下,只給出了主要的函數調用。
說明:t2線程執行lock.unlock後,最終達到的狀態仍是與以前的狀態同樣。
2. 示例二
下面咱們結合Condition實現生產者與消費者,來進一步分析AbstractQueuedSynchronizer的內部工做機制。
Depot(倉庫)類
package com.hust.grid.leesf.reentrantLock; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class Depot { private int size; private int capacity; private Lock lock; private Condition fullCondition; private Condition emptyCondition; public Depot(int capacity) { this.capacity = capacity; lock = new ReentrantLock(); fullCondition = lock.newCondition(); emptyCondition = lock.newCondition(); } public void produce(int no) { lock.lock(); int left = no; try { while (left > 0) { while (size >= capacity) { System.out.println(Thread.currentThread() + " before await"); fullCondition.await(); System.out.println(Thread.currentThread() + " after await"); } int inc = (left + size) > capacity ? (capacity - size) : left; left -= inc; size += inc; System.out.println("produce = " + inc + ", size = " + size); emptyCondition.signal(); } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } public void consume(int no) { lock.lock(); int left = no; try { while (left > 0) { while (size <= 0) { System.out.println(Thread.currentThread() + " before await"); emptyCondition.await(); System.out.println(Thread.currentThread() + " after await"); } int dec = (size - left) > 0 ? left : size; left -= dec; size -= dec; System.out.println("consume = " + dec + ", size = " + size); fullCondition.signal(); } } catch (InterruptedException e) { e.printStackTrace(); } finally { lock.unlock(); } } }
測試類
package com.hust.grid.leesf.reentrantLock; class Consumer { private Depot depot; public Consumer(Depot depot) { this.depot = depot; } public void consume(int no) { new Thread(new Runnable() { @Override public void run() { depot.consume(no); } }, no + " consume thread").start(); } } class Producer { private Depot depot; public Producer(Depot depot) { this.depot = depot; } public void produce(int no) { new Thread(new Runnable() { @Override public void run() { depot.produce(no); } }, no + " produce thread").start(); } } public class ReentrantLockDemo { public static void main(String[] args) throws InterruptedException { Depot depot = new Depot(500); new Producer(depot).produce(500); new Producer(depot).produce(200); new Consumer(depot).consume(500); new Consumer(depot).consume(200); } }
運行結果(可能的一種):
produce = 500, size = 500 Thread[200 produce thread,5,main] before await consume = 500, size = 0 Thread[200 consume thread,5,main] before await Thread[200 produce thread,5,main] after await produce = 200, size = 200 Thread[200 consume thread,5,main] after await consume = 200, size = 0
說明:根據結果,咱們猜想一種可能的時序以下
說明:p1表明produce 500的那個線程,p2表明produce 200的那個線程,c1表明consume 500的那個線程,c2表明consume 200的那個線程。
1. p1線程調用lock.lock,得到鎖,繼續運行,函數調用順序在前面已經給出。
2. p2線程調用lock.lock,由前面的分析可獲得以下的最終狀態。
5. p1線程執行emptyCondition.signal,其函數調用順序以下,只給出了主要的函數調用。
說明:AQS.CO表示AbstractQueuedSynchronizer.ConditionObject類。此時調用signal方法不會產生任何其餘效果。
6. p1線程執行lock.unlock,根據前面的分析可知,最終的狀態以下。
說明:此時,p2線程所在的結點爲頭結點,而且其餘兩個線程(c一、c2)依舊被禁止,因此,此時p2線程繼續運行,執行用戶邏輯。
7. p2線程執行fullCondition.await,其函數調用順序以下,只給出了主要的函數調用。
說明:最終到達的狀態是新生成了一個結點,包含了p2線程,此結點在condition queue中;而且sync queue中p2線程被禁止了,由於在執行了LockSupport.park操做。從函數一些調用可知,在await操做中線程會釋放鎖資源,供其餘線程獲取。同時,head結點後繼結點的包含的線程的許可被釋放了,故其能夠繼續運行。因爲此時,只有c1線程能夠運行,故運行c1。
8. 繼續運行c1線程,c1線程因爲以前被park了,因此此時恢復,繼續以前的步驟,即仍是執行前面提到的acquireQueued函數,以後,c1判斷本身的前驅結點爲head,而且能夠獲取鎖資源,最終到達的狀態以下。
說明:其中,head設置爲包含c1線程的結點,c1繼續運行。
9. c1線程執行fullCondtion.signal,其函數調用順序以下,只給出了主要的函數調用。
說明:signal函數達到的最終結果是將包含p2線程的結點從condition queue中轉移到sync queue中,以後condition queue爲null,以前的尾結點的狀態變爲SIGNAL。
10. c1線程執行lock.unlock操做,根據以前的分析,經歷的狀態變化以下。
說明:最終c2線程會獲取鎖資源,繼續運行用戶邏輯。
11. c2線程執行emptyCondition.await,由前面的第七步分析,可知最終的狀態以下。
說明:await操做將會生成一個結點放入condition queue中與以前的一個condition queue是不相同的,而且unpark頭結點後面的結點,即包含線程p2的結點。
12. p2線程被unpark,故能夠繼續運行,通過CPU調度後,p2繼續運行,以後p2線程在AQS:await函數中被park,繼續AQS.CO:await函數的運行,其函數調用順序以下,只給出了主要的函數調用。
13. p2繼續運行,執行emptyCondition.signal,根據第九步分析可知,最終到達的狀態以下。
說明:最終,將condition queue中的結點轉移到sync queue中,並添加至尾部,condition queue會爲空,而且將head的狀態設置爲SIGNAL。
14. p2線程執行lock.unlock操做,根據前面的分析可知,最後的到達的狀態以下。
說明:unlock操做會釋放c2線程的許可,而且將頭結點設置爲c2線程所在的結點。
15. c2線程繼續運行,執行fullCondition. signal,因爲此時fullCondition的condition queue已經不存在任何結點了,故其不會產生做用。
16. c2執行lock.unlock,因爲c2是sync隊列中最後一個結點,故其不會再調用unparkSuccessor了,直接返回true。即整個流程就完成了。
5、總結
對於AbstractQueuedSynchronizer的分析,最核心的就是sync queue的分析。
① 每個結點都是由前一個結點喚醒
② 當結點發現前驅結點是head而且嘗試獲取成功,則會輪到該線程運行。
③ condition queue中的結點向sync queue中轉移是經過signal操做完成的。
④ 當結點的狀態爲SIGNAL時,表示後面的結點須要運行。
固然,這次分析沒有涉及到中斷操做,若是涉及到中斷操做,又會複雜得多,之後遇到這種狀況,咱們再進行詳細分析,AbstractQueuedSynchronizer類的設計使人歎爲觀止,之後有機會還會進行分析。也謝謝各位園友的觀看~
最後給出兩篇參考連接
http://ifeve.com/introduce-abstractqueuedsynchronizer/
http://blog.csdn.net/chen77716/article/details/6641477