有\(n\)個字符串\(s_1,s_2,\dots,s_n\)(\(1 \leq n \leq 12\),\(1 \leq | s_i | \leq 50\)),求一個最短的字符串\(S\),使這\(n\)個字符串都是\(S\)的子串。ios
咱們先對這\(n\)個字符串建AC自動機,這裏咱們對於Trie上的結點\(i\),定義一個狀態\(state_i\),表示第\(i\)個結點對應的字符串,包含的題目中給出的哪些字符串。
咱們能夠從Trie上的根節點,按照字典序BFS,咱們用\(f\)表示當前通過的全部結點的包含的全部字符串,顯然,當\(f\)包含全部字符串時,此時即爲最優解。具體能夠看代碼理解,沒什麼好說的。ui
#include <iostream> #include <cstdio> #include <cstring> #define MAX_N (12 + 5) #define MAX_S ((1 << 12) + 5) #define MAX_LEN (50 + 5) using namespace std; struct Trie { int to[30]; int fail; char ch; int state; }; int n; char s[MAX_LEN]; Trie t[MAX_N * MAX_LEN]; int m = 1; int q[MAX_N * MAX_LEN], l, r; bool vis[MAX_N * MAX_LEN][MAX_S]; int pos[MAX_N * MAX_LEN * MAX_S], prev[MAX_N * MAX_LEN * MAX_S], f[MAX_N * MAX_LEN * MAX_S]; char ans[MAX_N * MAX_LEN]; int top; void Insert(int state) { int len = strlen(s + 1); int now = 1, tmp; for (int i = 1; i <= len; ++i) { tmp = s[i] - 'A'; if (!t[now].to[tmp]) { t[now].to[tmp] = ++m; t[m].ch = s[i]; } now = t[now].to[tmp]; } t[now].state |= state; return; } void Build() { for (int i = 0; i < 26; ++i) { t[0].to[i] = 1; } q[1] = 1; l = r = 1; int now; while (l <= r) { now = q[l++]; for (int i = 0; i < 26; ++i) { if (t[now].to[i]) { t[t[now].to[i]].fail = t[t[now].fail].to[i]; t[t[now].to[i]].state |= t[t[t[now].fail].to[i]].state; q[++r] = t[now].to[i]; } else { t[now].to[i] = t[t[now].fail].to[i]; } } } return; } void Solve() { vis[1][0] = true; pos[0] = 1; int u, v; int now = 0, cnt = 0; const int lim = (1 << n) - 1; while (now <= cnt) { if (f[now] == lim) { while(now) { u = pos[now]; if (t[u].ch) ans[++top] = t[u].ch; now = prev[now]; } break; } u = pos[now]; for (int i = 0; i < 26; ++i) { v = t[u].to[i]; if (vis[v][f[now] | t[v].state]) continue; vis[v][f[now] | t[v].state] = true; pos[++cnt] = v; prev[cnt] = now; f[cnt] = f[now] | t[v].state; } ++now; } return; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%s", s + 1); Insert(1 << i - 1); } Build(); Solve(); while (top) putchar(ans[top--]); return 0; }