caffe的python接口學習(5):生成deploy文件

若是要把訓練好的模型拿來測試新的圖片,那必須得要一個deploy.prototxt文件,這個文件實際上和test.prototxt文件差很少,只是頭尾不相同而也。deploy文件沒有第一層數據輸入層,也沒有最後的Accuracy層,但最後多了一個Softmax機率層。ide

這裏咱們採用代碼的方式來自動生成該文件,以mnist爲例。測試

deploy.pyspa

# -*- coding: utf-8 -*-

from caffe import layers as L,params as P,to_proto
root='/home/xxx/'
deploy=root+'mnist/deploy.prototxt'    #文件保存路徑

def create_deploy():
    #少了第一層,data層
    conv1=L.Convolution(bottom='data', kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
    relu3=L.ReLU(fc3, in_place=True)
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
    #最後沒有accuracy層,但有一個Softmax層
    prob=L.Softmax(fc4)
    return to_proto(prob)
def write_deploy(): 
    with open(deploy, 'w') as f:
        f.write('name:"Lenet"\n')
        f.write('input:"data"\n')
        f.write('input_dim:1\n')
        f.write('input_dim:3\n')
        f.write('input_dim:28\n')
        f.write('input_dim:28\n')
        f.write(str(create_deploy()))
if __name__ == '__main__':
    write_deploy()

運行該文件後,會在mnist目錄下,生成一個deploy.prototxt文件。code

這個文件不推薦用代碼來生成,反而麻煩。你們熟悉之後能夠將test.prototxt複製一份,修改相應的地方就能夠了,更加方便。blog

相關文章
相關標籤/搜索