一、建立工程html
scrapy startproject jd
二、建立項目mysql
scrapy genspider jingdong
三、安裝pymysqlweb
pip install pymysql
四、settings.py文件,主要是全局字段的定義,包括數據庫信息sql
# -*- coding: utf-8 -*- # Scrapy settings for jd project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'jd' SPIDER_MODULES = ['jd.spiders'] NEWSPIDER_MODULE = 'jd.spiders' LOG_LEVEL="WARNING" LOG_FILE="./jingdong1.log" # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'jd (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'jd.middlewares.JdSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'jd.middlewares.JdDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'jd.pipelines.JdPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' # 鏈接數據MySQL # 數據庫地址 MYSQL_HOST = 'localhost' # 數據庫用戶名: MYSQL_USER = 'root' # 數據庫密碼 MYSQL_PASSWORD = 'yang156122' # 數據庫端口 MYSQL_PORT = 3306 # 數據庫名稱 MYSQL_DBNAME = 'test' # 數據庫編碼 MYSQL_CHARSET = 'utf8'
五、items.py文件定義數據庫字段數據庫
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class JdItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() appTime = scrapy.Field() applicantErp = scrapy.Field() formatPublishTime = scrapy.Field() jobType = scrapy.Field() positionName = scrapy.Field() positionNameOpen = scrapy.Field() publishTime = scrapy.Field() qualification= scrapy.Field() pass
六、jingdong.py文件主要是爬取所需數據json
# -*- coding: utf-8 -*- import scrapy import logging import json logger = logging.getLogger(__name__) class JingdongSpider(scrapy.Spider): name = 'jingdong' allowed_domains = ['zhaopin.jd.com'] start_urls = ['http://zhaopin.jd.com/web/job/job_list?page=1'] pageNum = 1 def parse(self, response): content = response.body.decode() content = json.loads(content) ##########去除列表中字典集中的空值########### for i in range(len(content)): #list(content[i].keys()獲取當前字典中的key # for key in list(content[i].keys()): #content[i]爲字典 # if not content[i].get(key):#content[i].get(key)根據key獲取value # del content[i][key] #刪除空值字典 yield content[i] # for i in range(len(content)): # logging.warning(content[i]) self.pageNum = self.pageNum+1 if self.pageNum<=355: next_url = "http://zhaopin.jd.com/web/job/job_list?page="+str(self.pageNum) yield scrapy.Request( next_url, callback=self.parse ) pass
七、pipelines.py文件主要是對爬取的數據進行清洗和處理,包括數據的入庫操做api
這裏和tencent相比,主要是增長了時間處理cookie
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import logging from pymysql import cursors from twisted.enterprise import adbapi import time import copy class JdPipeline(object): # 函數初始化 def __init__(self, db_pool): self.db_pool = db_pool @classmethod def from_settings(cls, settings): """類方法,只加載一次,數據庫初始化""" db_params = dict( host=settings['MYSQL_HOST'], user=settings['MYSQL_USER'], password=settings['MYSQL_PASSWORD'], port=settings['MYSQL_PORT'], database=settings['MYSQL_DBNAME'], charset=settings['MYSQL_CHARSET'], use_unicode=True, # 設置遊標類型 cursorclass=cursors.DictCursor ) # 建立鏈接池 db_pool = adbapi.ConnectionPool('pymysql', **db_params) # 返回一個pipeline對象 return cls(db_pool) def process_item(self, item, spider): myItem = {} myItem["appTime"]=item["appTime"] myItem["applicantErp"] = item["applicantErp"] myItem["formatPublishTime"] = item["formatPublishTime"] myItem["jobType"] = item["jobType"] myItem["positionName"] = item["positionName"] #時間轉換 publishTime = item["publishTime"] publishTime = time.localtime(int(str(publishTime)[:10])) #時間格式轉換 myItem["publishTime"] = time.strftime("%Y-%m-%d %H:%M:%S", publishTime) myItem["positionNameOpen"]=item["positionNameOpen"] myItem["qualification"] = item["qualification"] logging.warning(item) # 對象拷貝,深拷貝 --- 這裏是解決數據重複問題!!! asynItem = copy.deepcopy(myItem) # 把要執行的sql放入鏈接池 query = self.db_pool.runInteraction(self.insert_into, asynItem) # 若是sql執行發送錯誤,自動回調addErrBack()函數 query.addErrback(self.handle_error, myItem, spider) return myItem # 處理sql函數 def insert_into(self, cursor, item): # 建立sql語句 sql = "INSERT INTO jingdong (appTime,applicantErp,formatPublishTime,jobType,positionName,publishTime,positionNameOpen,qualification) " \ "VALUES ('{}','{}','{}','{}','{}','{}','{}','{}')".format( item['appTime'], item['applicantErp'],item['formatPublishTime'] , item['jobType'], item['positionName'], item['publishTime'], item['positionNameOpen'],item['qualification']) # 執行sql語句 cursor.execute(sql) # 錯誤函數 def handle_error(self, failure, item, spider): # #輸出錯誤信息 print("failure", failure)
完美收官!!!app