這裏咱們使用grid對ggplot的畫圖對象進行佈局ide
# Multiple plot function # # ggplot objects can be passed in ..., or to plotlist (as a list of ggplot # objects) # - cols: Number of columns in layout # - layout: A matrix specifying the layout. If present, 'cols' is ignored. # # If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), # then plot 1 will go in the upper left, 2 will go in the upper right, and # 3 will go all the way across the bottom. # e=0.15, # extra height needed for last plot (vertical layout), # or extra width for first plot (horizontal layout) multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL, horizontal=FALSE, e=0.15) { require(grid) # Make a list from the ... arguments and plotlist plots = c(list(...), plotlist) numPlots = length(plots) #message(paste0('>>>>>>>INFO: num plots 2 = ', numPlots), '\n') # If layout is NULL, then use 'cols' to determine layout if (is.null(layout)) { # Make the panel # ncol: Number of columns of plots # nrow: Number of rows needed, calculated from # of cols layout = matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols, nrow = ceiling(numPlots/cols)) } if (numPlots==1) { print(plots[[1]]) } else { ## set up heights/widths of plots # extra height needed for last plot (vertical layout), # or extra width for first plot (horizontal layout) hei = rep(1, numPlots) # bottom plot is taller hei[numPlots] = hei[numPlots]*(1+e) wid = rep(1, numPlots) # first left plot is wider wid[1] = wid[1]*(1+e) # Set up the page grid.newpage() if(horizontal){ pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout), widths=wid))) }else{ pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout), heights=hei))) } # Make each plot, in the correct location for (i in 1:numPlots) { # Get i,j matrix positions of the regions containing this subplot matchidx = as.data.frame(which(layout == i, arr.ind = TRUE)) print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = matchidx$col)) } } } library(ggplot2) p1 <- ggplot(iris, aes(x = Sepal.Length)) + geom_histogram() + theme_bw() p2 <- ggplot(iris, aes(x = Sepal.Length, y = Petal.Width)) + geom_point() + theme_bw() # 直接使用ggplot對象畫圖 multiplot(p1,p2) # 將ggplot對象放入列表中,再用列表畫圖, 並設置兩列的排列方式 plot_lst <- list() plot_lst[[1]] <- p1 plot_lst[[2]] <- p2 multiplot(plotlist = plot_lst, cols = 2)
ClonEvol: clonal ordering and visualization in cancer
sequencing文獻裏面CloneEvol包裏面boxplot.r函數函數