1.Prometheus Server: 用於收集和存儲時間序列數據。node
2.Client Library: 客戶端庫,檢測應用程序代碼,當Prometheus抓取實例的HTTP端點時,客戶端庫會將全部跟蹤的metrics指標的當前狀態發送到prometheus server端。linux
3.Exporters: prometheus支持多種exporter,經過exporter能夠採集metrics數據,而後發送到prometheus server端git
4.Alertmanager: 從 Prometheus server 端接收到 alerts 後,會進行去重,分組,並路由到相應的接收方,發出報警,常見的接收方式有:電子郵件,微信,釘釘, slack等。github
5.Grafana:監控儀表盤web
6.pushgateway: 各個目標主機可上報數據到pushgatewy,而後prometheus server統一從pushgateway拉取數據。docker
從上圖可發現,Prometheus整個生態圈組成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheus server由三個部分組成,Retrieval,Storage,PromQL 。數據庫
node-exporter是採集機器(物理機、虛擬機、雲主機等)的監控指標數據,可以採集到的指標包括CPU, 內存,磁盤,網絡,文件數等信息。json
一個master節點,一個node節點。c#
cat >node-export.yaml <<EOF apiVersion: apps/v1 kind: DaemonSet metadata: name: node-exporter namespace: monitor-sa labels: name: node-exporter spec: selector: matchLabels: name: node-exporter template: metadata: labels: name: node-exporter spec: hostPID: true hostIPC: true hostNetwork: true containers: - name: node-exporter image: prom/node-exporter:v0.16.0 ports: - containerPort: 9100 resources: requests: cpu: 0.15 securityContext: privileged: true args: - --path.procfs - /host/proc - --path.sysfs - /host/sys - --collector.filesystem.ignored-mount-points - '"^/(sys|proc|dev|host|etc)($|/)"' volumeMounts: - name: dev mountPath: /host/dev - name: proc mountPath: /host/proc - name: sys mountPath: /host/sys - name: rootfs mountPath: /rootfs tolerations: - key: "node-role.kubernetes.io/master" operator: "Exists" effect: "NoSchedule" volumes: - name: proc hostPath: path: /proc - name: dev hostPath: path: /dev - name: sys hostPath: path: /sys - name: rootfs hostPath: path: / EOF
curl http://主機ip:9100/metrics
建立namespace、sa帳號,在k8s集羣的master節點操做api
kubectl create ns monitor-sa kubectl create serviceaccount monitor -n monitor-sa #把sa帳號monitor經過clusterrolebing綁定到clusterrole上 kubectl create clusterrolebinding moniror-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
建立數據目錄
# 在k8s集羣的任何一個node節點操做,本實驗在node1上操做 mkdir /data chmod 777 /data/
安裝prometheus,在master節點操做
#建立一個configmap存儲卷,用來存放prometheus配置信息 #prometheus-cfg.yaml kind: ConfigMap apiVersion: v1 metadata: labels: app: prometheus name: prometheus-config namespace: monitor-sa data: prometheus.yml: | global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__address__] regex: '(.*):10250' replacement: ':9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-node-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes//proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: : - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name --- #經過deployment部署prometheus #prometheus-deploy.yaml apiVersion: apps/v1 kind: Deployment metadata: name: prometheus-server namespace: monitor-sa labels: app: prometheus spec: replicas: 1 selector: matchLabels: app: prometheus component: server template: metadata: labels: app: prometheus component: server annotations: prometheus.io/scrape: 'false' spec: nodeName: node1 serviceAccountName: monitor containers: - name: prometheus image: prom/prometheus:v2.2.1 imagePullPolicy: IfNotPresent command: - prometheus - --config.file=/etc/prometheus/prometheus.yml - --storage.tsdb.path=/prometheus - --storage.tsdb.retention=720h ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: /etc/prometheus/prometheus.yml name: prometheus-config subPath: prometheus.yml - mountPath: /prometheus/ name: prometheus-storage-volume volumes: - name: prometheus-config configMap: name: prometheus-config items: - key: prometheus.yml path: prometheus.yml mode: 0644 - name: prometheus-storage-volume hostPath: path: /data type: Directory
注意:經過上面命令生成的promtheus-cfg.yaml文件會有一些問題,$1和$2這種變量在文件裏沒有,須要在k8s的master1節點打開promtheus-cfg.yaml文件,手動把$1和$2這種變量寫進文件裏,promtheus-cfg.yaml文件須要手動修改部分以下:
22行的replacement: ':9100'變成replacement: '${1}:9100' 42行的replacement: /api/v1/nodes//proxy/metrics/cadvisor變成 replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor 73行的replacement: 變成replacement: $1:$2
給prometheus pod 建立一個service
cat > prometheus-svc.yaml << EOF --- apiVersion: v1 kind: Service metadata: name: prometheus namespace: monitor-sa labels: app: prometheus spec: type: NodePort ports: - port: 9090 targetPort: 9090 protocol: TCP selector: app: prometheus component: server EOF
#查看service在物理機映射的端口 kubectl get svc -n monitor-sa #訪問prometheus web ui 界面 http://172.16.9.3:30426/graph #點擊頁面的Status->Targets,可看到以下,說明咱們配置的服務發現能夠正常採集數據
#爲了每次修改配置文件能夠熱加載prometheus,也就是不中止prometheus,就可使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用以下熱加載命令:
curl -X POST http://10.244.1.125:9090/-/reload
#10.244.1.66是prometheus的pod的ip地址
#熱加載速度比較慢,能夠暴力重啓prometheus,如修改上面的prometheus-cfg.yaml文件以後,可執行以下強制刪除:
kubectl delete -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
而後再經過apply更新:
kubectl apply -f prometheus-cfg.yaml
kubectl apply -f prometheus-deploy.yaml
注意:
線上最好熱加載,暴力刪除可能形成監控數據的丟失
下載安裝Grafana須要的鏡像
上傳heapster-grafana-amd64_v5_0_4.tar.gz鏡像到k8s的各個master節點和k8s的各個node節點,而後在各個節點手動解壓:
docker load -i heapster-grafana-amd64_v5_0_4.tar.gz
鏡像所在的百度網盤地址以下:
連接:https://pan.baidu.com/s/1TmVGKxde_cEYrbjiETboEA 提取碼:052u
cat >grafana.yaml << EOF apiVersion: apps/v1 kind: Deployment metadata: name: monitoring-grafana namespace: kube-system spec: replicas: 1 selector: matchLabels: task: monitoring k8s-app: grafana template: metadata: labels: task: monitoring k8s-app: grafana spec: containers: - name: grafana image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4 ports: - containerPort: 3000 protocol: TCP volumeMounts: - mountPath: /etc/ssl/certs name: ca-certificates readOnly: true - mountPath: /var name: grafana-storage env: - name: INFLUXDB_HOST value: monitoring-influxdb - name: GF_SERVER_HTTP_PORT value: "3000" # The following env variables are required to make Grafana accessible via # the kubernetes api-server proxy. On production clusters, we recommend # removing these env variables, setup auth for grafana, and expose the grafana # service using a LoadBalancer or a public IP. - name: GF_AUTH_BASIC_ENABLED value: "false" - name: GF_AUTH_ANONYMOUS_ENABLED value: "true" - name: GF_AUTH_ANONYMOUS_ORG_ROLE value: Admin - name: GF_SERVER_ROOT_URL # If you're only using the API Server proxy, set this value instead: # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy value: / volumes: - name: ca-certificates hostPath: path: /etc/ssl/certs - name: grafana-storage emptyDir: {} --- apiVersion: v1 kind: Service metadata: labels: # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons) # If you are NOT using this as an addon, you should comment out this line. kubernetes.io/cluster-service: 'true' kubernetes.io/name: monitoring-grafana name: monitoring-grafana namespace: kube-system spec: # In a production setup, we recommend accessing Grafana through an external Loadbalancer # or through a public IP. # type: LoadBalancer # You could also use NodePort to expose the service at a randomly-generated port # type: NodePort ports: - port: 80 targetPort: 3000 selector: k8s-app: grafana type: NodePort EOF
經過kubectl get sac -n cube-system看到grafana暴漏的蘇主機端口是32351,咱們能夠訪問k8s集羣的master節點ip:32351便可訪問grafana的web界面
登陸Grafana,172.16.9.3:32351,帳號密碼都是admin
配置grafana界面,選擇create your first data source
Name:Prometheus Type:Prometheus HTTP出的URL:http://prometheus.monitor-sa.svc:9090
點擊左下角Save&Test,出現Data source is working,說明prometheus數據源成功的被grafana接入了。
導入監控模板,可在以下連接搜索
https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
也可直接導入node_exporter.json監控模板,這個能夠把node節點指標顯示出來,node_exporter.json在百度網盤地址以下:
連接:https://pan.baidu.com/s/1vF1kAMRbxQkUGPlZt91MWg 提取碼:kyd6
還可直接導入docker_rev1.json,能夠把容器相關的數據展現出來
docker_rev1.json在百度網盤地址以下
連接:https://pan.baidu.com/s/17o_nja5N2R-g9g5PkJ3aFA 提取碼:vinv
導入監控模版步驟:點擊左側+號下面的Import,選擇Upload json file,選擇一個本地的json文件便可。
kube-state-metrics經過監聽API Server生成有關資源對象的狀態指標,好比Deployment、Node、Pod,須要注意的是kube-state-metrics只是簡單的提供一個metrics數據,並不會存儲這些指標數據,因此咱們可使用Prometheus來抓取這些數據而後存儲,主要關注的是業務相關的一些元數據,好比Deployment、Pod、副本狀態等;調度了多少個replicas?如今可用的有幾個?多少個Pod是running/stopped/terminated狀態?Pod重啓了多少次?我有多少job在運行中。
建立sa,並對sa受權,在master節點操做
cat > kube-state-metrics-rbac.yaml <<EOF --- apiVersion: v1 kind: ServiceAccount metadata: name: kube-state-metrics namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: kube-state-metrics rules: - apiGroups: [""] resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"] verbs: ["list", "watch"] - apiGroups: ["extensions"] resources: ["daemonsets", "deployments", "replicasets"] verbs: ["list", "watch"] - apiGroups: ["apps"] resources: ["statefulsets"] verbs: ["list", "watch"] - apiGroups: ["batch"] resources: ["cronjobs", "jobs"] verbs: ["list", "watch"] - apiGroups: ["autoscaling"] resources: ["horizontalpodautoscalers"] verbs: ["list", "watch"] --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: kube-state-metrics roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: kube-state-metrics subjects: - kind: ServiceAccount name: kube-state-metrics namespace: kube-system EOF
安裝cube-state-metrics組件,在master節點操做
cat > kube-state-metrics-deploy.yaml <<EOF apiVersion: apps/v1 kind: Deployment metadata: name: kube-state-metrics namespace: kube-system spec: replicas: 1 selector: matchLabels: app: kube-state-metrics template: metadata: labels: app: kube-state-metrics spec: serviceAccountName: kube-state-metrics containers: - name: kube-state-metrics # image: gcr.io/google_containers/kube-state-metrics-amd64:v1.3.1 image: quay.io/coreos/kube-state-metrics:v1.9.0 ports: - containerPort: 8080 EOF
建立service,在master節點操做
cat >kube-state-metrics-svc.yaml <<EOF apiVersion: v1 kind: Service metadata: annotations: prometheus.io/scrape: 'true' name: kube-state-metrics namespace: kube-system labels: app: kube-state-metrics spec: ports: - name: kube-state-metrics port: 8080 protocol: TCP selector: app: kube-state-metrics EOF
在Grafana web界面導入kubernetes Cluster和kubernetes cluster monitoring
連接:https://pan.baidu.com/s/1QAMqT8scsXx-lzEPI6MPgA 提取碼:i4yd
在k8s的master節點建立alertmanager-cm.yaml文件
cat >alertmanager-cm.yaml <<EOF kind: ConfigMap apiVersion: v1 metadata: name: alertmanager namespace: monitor-sa data: alertmanager.yml: |- global: resolve_timeout: 1m smtp_smarthost: 'smtp.163.com:25' smtp_from: '15011572657@163.com' smtp_auth_username: '15011572657' smtp_auth_password: 'BDBPRMLNZGKWRFJP' smtp_require_tls: false route: group_by: [alertname] group_wait: 10s group_interval: 10s repeat_interval: 10m receiver: default-receiver receivers: - name: 'default-receiver' email_configs: - to: 'y1486170457@qq.com' send_resolved: true EOF
Alertmanager配置文件解釋說明:
smtp_smarthost: 'smtp.163.com:25' #用於發送郵件的郵箱的SMTP服務器地址+端口 smtp_from: '15011572657@163.com' #這是指定從哪一個郵箱發送報警 smtp_auth_username: '15011572657' #這是發送郵箱的認證用戶,不是郵箱名 smtp_auth_password: 'BDBPRMLNZGKWRFJP' #這是發送郵箱的受權碼而不是登陸密碼 email_configs: - to: 'y1486170457@qq.com' #to後面指定發送到哪一個郵箱,我發送到個人qq郵箱,你們須要寫本身的郵箱地址,不該該跟smtp_from的郵箱名字重複
在master節點從新生成prometheus-cfg.yaml文件
kind: ConfigMap apiVersion: v1 metadata: labels: app: prometheus name: prometheus-config namespace: monitor-sa data: prometheus.yml: | rule_files: - /etc/prometheus/rules.yml alerting: alertmanagers: - static_configs: - targets: ["localhost:9093"] global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__address__] regex: '(.*):10250' replacement: '${1}:9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-node-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - job_name: kubernetes-pods kubernetes_sd_configs: - role: pod relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_pod_annotation_prometheus_io_port target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - action: replace source_labels: - __meta_kubernetes_namespace target_label: kubernetes_namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: kubernetes_pod_name - job_name: 'kubernetes-schedule' scrape_interval: 5s static_configs: - targets: ['172.16.9.3:10251'] - job_name: 'kubernetes-controller-manager' scrape_interval: 5s static_configs: - targets: ['172.16.9.3:10252'] - job_name: 'kubernetes-kube-proxy' scrape_interval: 5s static_configs: - targets: ['172.16.9.3:10249','172.16.9.4:10249'] - job_name: 'kubernetes-etcd' scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key scrape_interval: 5s static_configs: - targets: ['172.16.9.3:2379'] rules.yml: | groups: - name: example rules: - alert: kube-proxy的cpu使用率大於80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%" - alert: kube-proxy的cpu使用率大於90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$lables.instance}}的{{$labels.job}}組件的cpu使用率超過90%" - alert: scheduler的cpu使用率大於80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%" - alert: scheduler的cpu使用率大於90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%" - alert: controller-manager的cpu使用率大於80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%" - alert: controller-manager的cpu使用率大於90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%" - alert: apiserver的cpu使用率大於80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%" - alert: apiserver的cpu使用率大於90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%" - alert: etcd的cpu使用率大於80% expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%" - alert: etcd的cpu使用率大於90% expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%" - alert: kube-state-metrics的cpu使用率大於80% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過80%" value: "{{ $value }}%" threshold: "80%" - alert: kube-state-metrics的cpu使用率大於90% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過90%" value: "{{ $value }}%" threshold: "90%" - alert: coredns的cpu使用率大於80% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過80%" value: "{{ $value }}%" threshold: "80%" - alert: coredns的cpu使用率大於90% expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過90%" value: "{{ $value }}%" threshold: "90%" - alert: kube-proxy打開句柄數>600 expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600" value: "{{ $value }}" - alert: kube-proxy打開句柄數>1000 expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000" value: "{{ $value }}" - alert: kubernetes-schedule打開句柄數>600 expr: process_open_fds{job=~"kubernetes-schedule"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600" value: "{{ $value }}" - alert: kubernetes-schedule打開句柄數>1000 expr: process_open_fds{job=~"kubernetes-schedule"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000" value: "{{ $value }}" - alert: kubernetes-controller-manager打開句柄數>600 expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600" value: "{{ $value }}" - alert: kubernetes-controller-manager打開句柄數>1000 expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000" value: "{{ $value }}" - alert: kubernetes-apiserver打開句柄數>600 expr: process_open_fds{job=~"kubernetes-apiserver"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600" value: "{{ $value }}" - alert: kubernetes-apiserver打開句柄數>1000 expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000" value: "{{ $value }}" - alert: kubernetes-etcd打開句柄數>600 expr: process_open_fds{job=~"kubernetes-etcd"} > 600 for: 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600" value: "{{ $value }}" - alert: kubernetes-etcd打開句柄數>1000 expr: process_open_fds{job=~"kubernetes-etcd"} > 1000 for: 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000" value: "{{ $value }}" - alert: coredns expr: process_open_fds{k8s_app=~"kube-dns"} > 600 for: 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打開句柄數超過600" value: "{{ $value }}" - alert: coredns expr: process_open_fds{k8s_app=~"kube-dns"} > 1000 for: 2s labels: severity: critical annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打開句柄數超過1000" value: "{{ $value }}" - alert: kube-proxy expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G" value: "{{ $value }}" - alert: scheduler expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G" value: "{{ $value }}" - alert: kubernetes-controller-manager expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G" value: "{{ $value }}" - alert: kubernetes-apiserver expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G" value: "{{ $value }}" - alert: kubernetes-etcd expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G" value: "{{ $value }}" - alert: kube-dns expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000 for: 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虛擬內存超過2G" value: "{{ $value }}" - alert: HttpRequestsAvg expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000 for: 2s labels: team: admin annotations: description: "組件{{$labels.job}}({{$labels.instance}}): TPS超過1000" value: "{{ $value }}" threshold: "1000" - alert: Pod_restarts expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0 for: 2s labels: severity: warnning annotations: description: "在{{$labels.namespace}}名稱空間下發現{{$labels.pod}}這個pod下的容器{{$labels.container}}被重啓,這個監控指標是由{{$labels.instance}}採集的" value: "{{ $value }}" threshold: "0" - alert: Pod_waiting expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1 for: 2s labels: team: admin annotations: description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.pod}}下的{{$labels.container}}啓動異常等待中" value: "{{ $value }}" threshold: "1" - alert: Pod_terminated expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1 for: 2s labels: team: admin annotations: description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.pod}}下的{{$labels.container}}被刪除" value: "{{ $value }}" threshold: "1" - alert: Etcd_leader expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0 for: 2s labels: team: admin annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 當前沒有leader" value: "{{ $value }}" threshold: "0" - alert: Etcd_leader_changes expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0 for: 2s labels: team: admin annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 當前leader已發生改變" value: "{{ $value }}" threshold: "0" - alert: Etcd_failed expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0 for: 2s labels: team: admin annotations: description: "組件{{$labels.job}}({{$labels.instance}}): 服務失敗" value: "{{ $value }}" threshold: "0" - alert: Etcd_db_total_size expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000 for: 2s labels: team: admin annotations: description: "組件{{$labels.job}}({{$labels.instance}}):db空間超過10G" value: "{{ $value }}" threshold: "10G" - alert: Endpoint_ready expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1 for: 2s labels: team: admin annotations: description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.endpoint}}不可用" value: "{{ $value }}" threshold: "1" - name: 物理節點狀態-監控告警 rules: - alert: 物理節點cpu使用率 expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90 for: 2s labels: severity: ccritical annotations: summary: "{{ $labels.instance }}cpu使用率太高" description: "{{ $labels.instance }}的cpu使用率超過90%,當前使用率[{{ $value }}],須要排查處理" - alert: 物理節點內存使用率 expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90 for: 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}內存使用率太高" description: "{{ $labels.instance }}的內存使用率超過90%,當前使用率[{{ $value }}],須要排查處理" - alert: InstanceDown expr: up == 0 for: 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}: 服務器宕機" description: "{{ $labels.instance }}: 服務器延時超過2分鐘" - alert: 物理節點磁盤的IO性能 expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入磁盤IO使用率太高!" description: "{{$labels.mountpoint }} 流入磁盤IO大於60%(目前使用:{{$value}})" - alert: 入網流量帶寬 expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入網絡帶寬太高!" description: "{{$labels.mountpoint }}流入網絡帶寬持續5分鐘高於100M. RX帶寬使用率{{$value}}" - alert: 出網流量帶寬 expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流出網絡帶寬太高!" description: "{{$labels.mountpoint }}流出網絡帶寬持續5分鐘高於100M. RX帶寬使用率{{$value}}" - alert: TCP會話 expr: node_netstat_Tcp_CurrEstab > 1000 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} TCP_ESTABLISHED太高!" description: "{{$labels.mountpoint }} TCP_ESTABLISHED大於1000%(目前使用:{{$value}}%)" - alert: 磁盤容量 expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80 for: 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 磁盤分區使用率太高!" description: "{{$labels.mountpoint }} 磁盤分區使用大於80%(目前使用:{{$value}}%)"
一樣須要手動添加$的變量。
在k8smaster節點從新生成一個prometheus-deploy.yaml文件
cat >prometheus-deploy.yaml <<EOF --- apiVersion: apps/v1 kind: Deployment metadata: name: prometheus-server namespace: monitor-sa labels: app: prometheus spec: replicas: 1 selector: matchLabels: app: prometheus component: server #matchExpressions: #- {key: app, operator: In, values: [prometheus]} #- {key: component, operator: In, values: [server]} template: metadata: labels: app: prometheus component: server annotations: prometheus.io/scrape: 'false' spec: nodeName: node1 serviceAccountName: monitor containers: - name: prometheus image: prom/prometheus:v2.2.1 imagePullPolicy: IfNotPresent command: - "/bin/prometheus" args: - "--config.file=/etc/prometheus/prometheus.yml" - "--storage.tsdb.path=/prometheus" - "--storage.tsdb.retention=24h" - "--web.enable-lifecycle" ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: /etc/prometheus name: prometheus-config - mountPath: /prometheus/ name: prometheus-storage-volume - name: k8s-certs mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ - name: alertmanager image: prom/alertmanager:v0.14.0 imagePullPolicy: IfNotPresent args: - "--config.file=/etc/alertmanager/alertmanager.yml" - "--log.level=debug" ports: - containerPort: 9093 protocol: TCP name: alertmanager volumeMounts: - name: alertmanager-config mountPath: /etc/alertmanager - name: alertmanager-storage mountPath: /alertmanager - name: localtime mountPath: /etc/localtime volumes: - name: prometheus-config configMap: name: prometheus-config - name: prometheus-storage-volume hostPath: path: /data type: Directory - name: k8s-certs secret: secretName: etcd-certs - name: alertmanager-config configMap: name: alertmanager - name: alertmanager-storage hostPath: path: /data/alertmanager type: DirectoryOrCreate - name: localtime hostPath: path: /usr/share/zoneinfo/Asia/Shanghai EOF
生成一個etch-certs,這個在部署prometheus須要
kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
更新yaml文件,查看部署是否成功。
在k8smaster節點上從新生成一個alertmanager-svc.yaml文件
cat >alertmanager-svc.yaml <<EOF --- apiVersion: v1 kind: Service metadata: labels: name: prometheus kubernetes.io/cluster-service: 'true' name: alertmanager namespace: monitor-sa spec: ports: - name: alertmanager nodePort: 30066 port: 9093 protocol: TCP targetPort: 9093 selector: app: prometheus sessionAffinity: None type: NodePort EOF
#查看service在物理機映射的端口
kubectl get svc -n monitor-sa
訪問prometheus界面,點擊alerts,把controller-manager的cpu使用率大於90%展開,可看到status爲FIRING,表示prometheus已經將告警發給alertmanager,在Alertmanager 中能夠看到有一個 alert。
登陸alertmanager web界面查看
建立釘釘機器人
打開電腦版釘釘,建立一個羣,建立自定義機器人,按以下步驟建立 https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq 我建立的機器人以下: 羣設置-->智能羣助手-->添加機器人-->自定義-->添加 機器人名稱:kube-event 接收羣組:釘釘報警測試 安全設置: 自定義關鍵詞:cluster1 上面配置好以後點擊完成便可,這樣就會建立一個kube-event的報警機器人,建立機器人成功以後怎麼查看webhook,按以下: 點擊智能羣助手,能夠看到剛纔建立的kube-event這個機器人,點擊kube-event,就會進入到kube-event機器人的設置界面 出現以下內容: 機器人名稱:kube-event 接受羣組:釘釘報警測試 消息推送:開啓 webhook:https://oapi.dingtalk.com/robot/send?access_token=9c03ff1f47b1d15a10d852398cafb84f8e81ceeb1ba557eddd8a79e5a5e5548e 安全設置: 自定義關鍵詞:cluster1
安裝釘釘的webhook插件,在master節點操做
tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz #壓縮包地址 #連接:https://pan.baidu.com/s/1_HtVZsItq2KsYvOlkIP9DQ #提取碼:d59o cd prometheus-webhook-dingtalk-0.3.0.linux-amd64 #啓動釘釘報警插件 nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=4372b6419ff1f198a9732dfb9f469f8c7eb7310dec00ede726a7ecd9d235c9b9" & #對原來的文件作備份 cp alertmanager-cm.yaml alertmanager-cm.yaml.bak #從新生成一個新的alertmanager-cm.yaml文件 cat >alertmanager-cm.yaml <<EOF kind: ConfigMap apiVersion: v1 metadata: name: alertmanager namespace: monitor-sa data: alertmanager.yml: |- global: resolve_timeout: 1m smtp_smarthost: 'smtp.163.com:25' smtp_from: '15011572657@163.com' smtp_auth_username: '15011572657' smtp_auth_password: 'BDBPRMLNZGKWRFJP' smtp_require_tls: false route: group_by: [alertname] group_wait: 10s group_interval: 10s repeat_interval: 10m receiver: cluster1 receivers: - name: cluster1 webhook_configs: - url: 'http://192.168.124.16:8060/dingtalk/cluster1/send' send_resolved: true EOF #經過kubectl apply使配置生效 kubectl delete -f alertmanager-cm.yaml kubectl apply -f alertmanager-cm.yaml kubectl delete -f prometheus-cfg.yaml kubectl apply -f prometheus-cfg.yaml kubectl delete -f prometheus-deploy.yaml kubectl apply -f prometheus-deploy.yaml #經過上面步驟,就能夠實現釘釘報警了