(一個)kafka-jstorm集羣實時日誌分析 它 ---------kafka實時日誌處理

package com.doctor.logbackextend;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

import org.apache.commons.lang.RandomStringUtils;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * zookeeper 和kafka環境準備好。

本地端口號默認設置 * * @author doctor * * @time 2014年10月24日 下午3:14:01 */ public class KafkaAppenderTest { private static final Logger LOG = LoggerFactory.getLogger(KafkaAppenderTest.class); /** 先啓動此測試方法,模擬log日誌輸出到kafka */ @Test public void test_log_producer() { while(true){ LOG.info("test_log_producer : " + RandomStringUtils.random(3, "hello doctro,how are you,and you")); } } /** 再啓動此測試方法。模擬消費者獲取日誌,進而分析,此方法不過打印打控制檯,不是log。防止模擬log測試方法數據混淆 */ @Test public void test_comsumer(){ Properties props = new Properties(); props.put("zookeeper.connect", "127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183"); props.put("group.id", "kafkatest-group"); // props.put("zookeeper.session.timeout.ms", "400"); // props.put("zookeeper.sync.time.ms", "200"); // props.put("auto.commit.interval.ms", "1000"); ConsumerConfig paramConsumerConfig = new ConsumerConfig(props ); ConsumerConnector consumer = Consumer.createJavaConsumerConnector(paramConsumerConfig ); Map<String, Integer> topicCountMap = new HashMap<>(); topicCountMap.put("kafka-test", new Integer(1)); Map<String, List<KafkaStream<byte[], byte[]>>> consumerStream = consumer.createMessageStreams(topicCountMap); List<KafkaStream<byte[], byte[]>> streams = consumerStream.get("kafka-test"); for (KafkaStream<byte[], byte[]> stream : streams) { ConsumerIterator<byte[], byte[]> it = stream.iterator(); while(it.hasNext()) System.out.println(new String("test_comsumer: " + new String(it.next().message()))); } } } html


      爲了實時日誌處理互聯網系統的日誌,對於電商來講具備很是重要的意義,比方,淘寶購物時候,你瀏覽某些商品的時候。系統後臺實時日誌處理分析後,系統可以向用戶實時推薦給用戶相關商品。來引導用戶的選擇等等。

        爲了實時日誌處理。咱們選擇kafka集羣,日誌的處理分析選擇jstorm集羣,至於jstorm處理的結果,你可以選擇保存到數據庫裏。入hbase、mysql。maridb等。java

系統的日誌接口選擇了slf4j,logback組合,爲了讓系統的日誌能夠寫入kafka集羣,選擇擴展logback Appender。在logback裏配置一下。就行本身主動輸出日誌到kafka集羣。mysql

kafka的集羣安裝,在此不介紹了,爲了模擬真實性,zookeeper本地集羣也安裝部署了。sql


如下是怎樣擴展logback Appender數據庫

package com.doctor.logbackextend;

import java.util.Properties;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import ch.qos.logback.classic.spi.ILoggingEvent;
import ch.qos.logback.core.AppenderBase;

public class KafkaAppender extends AppenderBase<ILoggingEvent> {

	private String topic;
	private String zookeeperHost;
	

	private String broker;
	private Producer<String, String> producer;
	private Formatter formatter;
	
	public String getBroker() {
		return broker;
	}

	public void setBroker(String broker) {
		this.broker = broker;
	}
	@Override
	protected void append(ILoggingEvent eventObject) {
		String message = this.formatter.formate(eventObject);
		this.producer.send(new KeyedMessage<String, String>(this.topic, message));

	}

	@Override
	public void start() {
		if (this.formatter == null) {
			this.formatter = new MessageFormatter();
		}
		
		super.start();
		Properties props = new Properties();
		props.put("zk.connect", this.zookeeperHost);
		props.put("metadata.broker.list", this.broker);
		props.put("serializer.class", "kafka.serializer.StringEncoder");
		
		ProducerConfig config = new ProducerConfig(props);
		this.producer = new Producer<String, String>(config);
	}

	@Override
	public void stop() {
		super.stop();
		this.producer.close();
	}

	
	
	public String getTopic() {
		return topic;
	}

	public void setTopic(String topic) {
		this.topic = topic;
	}

	public String getZookeeperHost() {
		return zookeeperHost;
	}

	public void setZookeeperHost(String zookeeperHost) {
		this.zookeeperHost = zookeeperHost;
	}

	public Producer<String, String> getProducer() {
		return producer;
	}

	public void setProducer(Producer<String, String> producer) {
		this.producer = producer;
	}


	public Formatter getFormatter() {
		return formatter;
	}

	public void setFormatter(Formatter formatter) {
		this.formatter = formatter;
	}
	
	
	
	/**
	 * 格式化日誌格式
	 * @author doctor
	 *
	 * @time   2014年10月24日 上午10:37:17
	 */
	interface Formatter{
		String formate(ILoggingEvent event);
	}
	
	public static class MessageFormatter implements Formatter{

		@Override
		public String formate(ILoggingEvent event) {
			
			return event.getFormattedMessage();
		}
		
	}
}


對於日誌的輸出格式 MessageFormatter沒有特殊處理,因爲僅僅是模擬一下,你可以制定你的格式,入json等。

在logback.xml的配置例如如下:

<appender name="kafka" class="com.doctor.logbackextend.KafkaAppender">
 		<topic>kafka-test</topic>
 		<!-- <zookeeperHost>127.0.0.1:2181</zookeeperHost> -->
 		<!-- <broker>127.0.0.1:9092</broker> -->
 		<zookeeperHost>127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183</zookeeperHost>
 		<broker>127.0.0.1:9092,127.0.0.1:9093</broker>
 	</appender>
 	
 	
	<root level="all">
		<appender-ref ref="stdout" />
		<appender-ref ref="defaultAppender" />
		<appender-ref ref="kafka" />
	</root>

  <zookeeperHost>
    我本地啓動了三個zookeer。依據配置。你可以知道是怎樣配置的吧。

   kafka集羣的broker我配置了兩個,都是在本地機器。apache


測試代碼:json

package com.doctor.logbackextend;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

import org.apache.commons.lang.RandomStringUtils;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * zookeeper 和kafka環境準備好。本地端口號默認設置
 * 
 * @author doctor
 *
 * @time   2014年10月24日 下午3:14:01
 */
public class KafkaAppenderTest {
	private static final Logger LOG = LoggerFactory.getLogger(KafkaAppenderTest.class);
	

	/** 先啓動此測試方法,模擬log日誌輸出到kafka */
	@Test
	public void test_log_producer() {
		while(true){
			LOG.info("test_log_producer : "  + RandomStringUtils.random(3, "hello doctro,how are you,and you"));
		}
	}
	
	
	/** 再啓動此測試方法,模擬消費者獲取日誌,進而分析,此方法不過打印打控制檯,不是log。防止模擬log測試方法數據混淆 */
	@Test
	public void test_comsumer(){
		Properties props = new Properties();
		props.put("zookeeper.connect", "127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183");
		props.put("group.id", "kafkatest-group");
//		props.put("zookeeper.session.timeout.ms", "400");
//		props.put("zookeeper.sync.time.ms", "200");
//		props.put("auto.commit.interval.ms", "1000");
		ConsumerConfig paramConsumerConfig = new ConsumerConfig(props );
		ConsumerConnector consumer = Consumer.createJavaConsumerConnector(paramConsumerConfig );
		
		Map<String, Integer> topicCountMap = new HashMap<>();
		topicCountMap.put("kafka-test", new Integer(1));
		Map<String, List<KafkaStream<byte[], byte[]>>> consumerStream = consumer.createMessageStreams(topicCountMap);
		List<KafkaStream<byte[], byte[]>> streams = consumerStream.get("kafka-test");
		
		for (KafkaStream<byte[], byte[]> stream : streams) {
			ConsumerIterator<byte[], byte[]> it = stream.iterator();
			while(it.hasNext())
			System.out.println(new String("test_comsumer: " + new String(it.next().message())));
		}
		
		
	}

}


結果,明天再附上截圖。

版權聲明:本文博客原創文章,博客,未經贊成,不得轉載。api

相關文章
相關標籤/搜索