Keras是基於python的深度學習庫python
Keras是一個高層神經網絡API,Keras由純Python編寫而成並基Tensorflow、Theano以及CNTK後端。git
安裝步驟及遇到的坑:github
(1)安裝tensorflow:CMD命令行輸入pip install --upgrade tensorflow後端
(2)安裝Keras:pip install keras -U --pre網絡
(3)驗證tensorflow工具
jupyter notebook或者spyder輸入如下代碼:學習
import tensorflow as tf hello = tf.constant(「hello,tensorflow」) sess = tf.Session() print(sess.run(hello))
能顯示「hello,tensorflow」則表示安裝成功測試
(4)驗證keras,lua
使用Keras中mnist數據集測試 下載Keras開發包,命令行輸入如下命令url
>>> conda install git #安裝git工具 >>> git clone https://github.com/fchollet/keras.git #下載keras工程內容 >>> cd keras/examples/ #進入測試代碼所在路徑 >>> python mnist_mlp.py #執行測試代碼
驗證keras時遇到兩個坑,問題描述及解決方案以下:
(1)conda更新失敗,安裝git工具遇到CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://repo.anaconda.com/pkgs/main/win-64/git-2問題,解決辦法是修改國內鏡像源,改成清華鏡像源便可
>>>conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ >>>conda config --set show_channel_urls yes #生成配置文件
修改生成的配置文件 C:\Users\<你的用戶名>\.condarc
#修改前
channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - default
ssl_verify: true show_channel_urls: true
#修改後
channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
ssl_verify: true show_channel_urls: true
>>>conda info命令查看配置信息,確認修改爲功後,>>>conda install git便可完成下載更新
(2)keras中的example案例中MNIST數據集沒法下載
問題緣由:keras 源碼中下載MNIST的方式是 path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz'),數據源是經過 url = https://s3.amazonaws.com/img-datasets/mnist.npz 進行下載的。訪問該 url 地址被牆了,致使 MNIST 相關的案例都
卡在數據下載部分
解決辦法:
(a)下載好 mnist_npz 數據集,並將其放於 .\keras\examples 目錄下
(b)修改mnist_mlp.py
'''Trains a simple deep NN on the MNIST dataset. Gets to 98.40% test accuracy after 20 epochs (there is *a lot* of margin for parameter tuning). 2 seconds per epoch on a K520 GPU. ''' from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop batch_size = 128 num_classes = 10 epochs = 20 #load data from local import numpy as np path = "./mnist.npz" f = np.load(path) x_train, y_train = f["x_train"], f["y_train"] x_test, y_test = f["x_test"], f["y_test"] f.close() # the data, split between train and test sets #(x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Dense(512, activation='relu', input_shape=(784,))) model.add(Dropout(0.2)) model.add(Dense(512, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=RMSprop(), metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])