在以前版本對應函數tf.selectspa
官方解釋:.net
1 tf.where(input, name=None)` 2 Returns locations of true values in a boolean tensor. 3 4 This operation returns the coordinates of true elements in input. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order. 5 6 For example: 7 # 'input' tensor is [[True, False] 8 # [True, False]] 9 # 'input' has two true values, so output has two coordinates. 10 # 'input' has rank of 2, so coordinates have two indices. 11 where(input) ==> [[0, 0], 12 [1, 0]] 13 14 # `input` tensor is [[[True, False] 15 # [True, False]] 16 # [[False, True] 17 # [False, True]] 18 # [[False, False] 19 # [False, True]]] 20 # 'input' has 5 true values, so output has 5 coordinates. 21 # 'input' has rank of 3, so coordinates have three indices. 22 where(input) ==> [[0, 0, 0], 23 [0, 1, 0], 24 [1, 0, 1], 25 [1, 1, 1], 26 [2, 1, 1]]
有兩種用法:code
一、tf.where(tensor)blog
tensor 爲一個bool 型張量,where函數將返回其中爲true的元素的索引。如上圖官方註釋索引
二、tf.where(tensor,a,b)three
a,b爲和tensor相同維度的tensor,將tensor中的true位置元素替換爲a中對應位置元素,false的替換爲b中對應位置元素。element
例:get
import tensorflow as tf import numpy as np sess=tf.Session() a=np.array([[1,0,0],[0,1,1]]) a1=np.array([[3,2,3],[4,5,6]]) print(sess.run(tf.equal(a,1))) print(sess.run(tf.where(tf.equal(a,1),a1,1-a1)))
>>[[true,false,false],[false,true,true]]input
>>[[3,-1,-2],[-3,5,6]]