#1 系列目錄多線程
該系列打算從一個最簡單的Executor執行器開始一步一步擴展到ThreadPoolExecutor,但願能粗略的描述出線程池的各個實現細節。針對JDK1.7中的線程池異步
#2 Executor接口說明函數
Executor執行器,就是執行一個Runnable任務,可同步可異步,接口定義以下:源碼分析
public interface Executor { /** * Executes the given command at some time in the future. The command * may execute in a new thread, in a pooled thread, or in the calling * thread, at the discretion of the <tt>Executor</tt> implementation. * * [@param](http://my.oschina.net/u/2303379) command the runnable task * [@throws](http://my.oschina.net/throws) RejectedExecutionException if this task cannot be * accepted for execution. * [@throws](http://my.oschina.net/throws) NullPointerException if command is null */ void execute(Runnable command); }
ExecutorService則繼承了Executor,描述了線程池應該具備的功能特性,來詳細看下接口,這些接口都有詳細的文檔能夠閱讀,這裏就再也不列出來了,目前只說明咱們重點關注的接口。this
<T> Future<T> submit(Callable<T> task);
能夠提交一個Callable,而且返回一個Future用於追蹤提交的任務。如何追蹤一個任務的狀態和返回數據呢?那就須要將提交的任務進行封裝,對任務的執行、執行過程當中的異常、中斷、返回結果進行統一的監控處理。下面就來看看AbstractExecutorService對上述submit的實現.net
public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; } protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); }
從上面看到就是對Callable封裝成一個新的任務,即FutureTask,調用Executor的原始接口execute方法來執行FutureTask,而且返回給用戶FutureTask對象,用於追蹤任務的狀態和數據,下面就須要咱們來詳細看看FutureTask如何對任務進行封裝的線程
#3 FutureTask的實現細節設計
##3.1 FutureTask的屬性和構造函數code
private volatile int state; private static final int NEW = 0; private static final int COMPLETING = 1; private static final int NORMAL = 2; private static final int EXCEPTIONAL = 3; private static final int CANCELLED = 4; private static final int INTERRUPTING = 5; private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */ private Callable<V> callable; /** The result to return or exception to throw from get() */ private Object outcome; // non-volatile, protected by state reads/writes /** The thread running the callable; CASed during run() */ private volatile Thread runner; /** Treiber stack of waiting threads */ private volatile WaitNode waiters; public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable }
有一個狀態變量state,一個Callable callable即原始任務,Object outcome存放原始任務的輸出結果或者異常,Thread runner運行該任務的線程,WaitNode waiters等待獲取任務結果的等待者對象
##3.2 FutureTask的get方法實現
使用FutureTask阻塞式等待任務執行結果,一種是永遠阻塞另外一種就是阻塞必定時間不然報超時異常,以下2個方法
public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); } public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null) throw new NullPointerException(); int s = state; if (s <= COMPLETING && (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); }
阻塞式等待的核心邏輯就在上述awaitDone方法中,來詳細看看
private int awaitDone(boolean timed, long nanos) throws InterruptedException { final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; for (;;) { if (Thread.interrupted()) { removeWaiter(q); throw new InterruptedException(); } int s = state; if (s > COMPLETING) { if (q != null) q.thread = null; return s; } else if (s == COMPLETING) // cannot time out yet Thread.yield(); else if (q == null) q = new WaitNode(); else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } else LockSupport.park(this); } }
能夠看到有一個for循環不斷處理着各類狀況:
1 從最開始的WaitNode q = null,構建了一個WaitNode,即表明着當前線程做爲一個等待者,WaitNode就是一個簡單的鏈表,以下
static final class WaitNode { volatile Thread thread; volatile WaitNode next; WaitNode() { thread = Thread.currentThread(); } }
2 構建好WaitNode以後就要將該WaitNode放入鏈表中,這時候就會涉及多線程問題,使用UNSAFE的CAS來解決,這種方式也是AtomicLong等衆多原子類的底層實現方式
3 成功放入WaitNode鏈表以後,採用LockSupport的park阻塞當前線程,要麼只阻塞必定時間要麼一直阻塞,直到被LockSupport的unpark喚醒。LockSupport在鎖的底層實現AQS中也很是常見,使用了LockSupport就能夠不用在for循環裏不斷判斷當前任務狀態而浪費CPU,只須要當前任務完成以後,使用LockSupport對等待線程進行unpark,就可使等待的線程退出等待繼續往下執行
4 若是LockSupport阻塞時間到了,還未收到unpark,則須要從等待者鏈表中刪除當前線程表明的等待者
##3.3 FutureTask的任務執行過程
public void run() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
1 一旦FutureTask任務開始執行了,就須要將當前執行線程設置到FutureTask的volatile Thread runner屬性中
2 執行原始任務Callable的call方法,可能成功也可能失敗也可能被中斷被取消
文檔中有以下狀態的遷移過程:
Possible state transitions: * NEW -> COMPLETING -> NORMAL * NEW -> COMPLETING -> EXCEPTIONAL * NEW -> CANCELLED * NEW -> INTERRUPTING -> INTERRUPTED
來看下成功和失敗方法
protected void set(V v) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state finishCompletion(); } } protected void setException(Throwable t) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = t; UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state finishCompletion(); } }
都是首先將狀態變成COMPLETING正在結束中,而後設置outcome,成功則設置正常的返回值,失敗則設置成異常,而後根據劃定最終的狀態結果,成功就是NORMAL,失敗就是EXCEPTIONAL,最後呢調用finishCompletion,去unpark以前說的WaitNode中對應的線程們
private void finishCompletion() { // assert state > COMPLETING; for (WaitNode q; (q = waiters) != null;) { if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { for (;;) { Thread t = q.thread; if (t != null) { q.thread = null; LockSupport.unpark(t); } WaitNode next = q.next; if (next == null) break; q.next = null; // unlink to help gc q = next; } break; } } done(); callable = null; // to reduce footprint }
這裏就是遍歷WaitNode鏈表,對每個WaitNode對應的線程依次進行LockSupport.unpark(t),使其結束阻塞。WaitNode通知完畢後,調用一個done方法,目前該方法是空的實現,因此你若是想在任務完成後執行一些動做的時候就能夠重寫該方法
有一個問題就是:爲何必定要加入COMPLETING狀態呢?能不能直接過分到NORMAL或者EXCEPTIONAL?
目前個人理解是:NORMAL或者EXCEPTIONAL是一種最終狀態,因此在出現該狀態前,outcome必須已經被設置了,即有以下代碼:
protected void set(V v) { outcome = v; UNSAFE.compareAndSwapInt(this, stateOffset, NEW, NORMAL) finishCompletion(); }
可是由於存在外部直接取消該任務,因此結果狀態的設置和outcome必須是同步的,且outcome在前,爲了保證代碼的同步可使用鎖
protected void set(V v) { synchronized(){ outcome = v; UNSAFE.compareAndSwapInt(this, stateOffset, NEW, NORMAL) finishCompletion(); } }
爲了減小鎖帶來的開支,就能夠引入一箇中間狀態COMPLETING,經過CAS來間接實現鎖的競爭,同時又保證outcome在最終狀態NORMAL或者EXCEPTIONAL以前被設置
##3.4 FutureTask任務的取消
public boolean cancel(boolean mayInterruptIfRunning) { if (state != NEW) return false; if (mayInterruptIfRunning) { if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING)) return false; Thread t = runner; if (t != null) t.interrupt(); UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state } else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED)) return false; finishCompletion(); return true; }
取消任務,有2種狀況,一種該任務正在運行,一種就是非運行狀態,因此須要用戶給出明示是否中斷正在運行的任務,即須要一個參數mayInterruptIfRunning
中斷任務就是經過中斷運行該任務的線程,即直接調用該線程的interrupt()方法
#4 結束語
FutureTask大部分就簡單分析完了,其餘的本身去看下就好了。至此咱們瞭解了一個任務被提交通過了封裝,變成了一個新的任務FutureTask,同時FutureTask也明確了該任務的整個執行過程,只留出核心execute(futureTask)方法須要被子類來實現,下一篇文章就重點介紹下ThreadPoolExecutor對該核心方法的實現