頻率
mysql 客戶端鏈接成功後,經過 show [session|global] status 命令能夠提供服務器狀態信息,也能夠在操做系統上使用 mysqladmin extend-status 命令獲取這些消息。
show status 命令中間能夠加入選項 session(默認) 或 global:mysql
# Com_xxx 表示每一個 xxx 語句執行的次數。 mysql> show status like 'Com_%';
上面這些參數對於全部存儲引擎的表操做都會進行累計。下面這幾個參數只是針對 innodb 的,累加的算法也略有不一樣:算法
經過以上幾個參數,能夠很容易地瞭解當前數據庫的應用是以插入更新爲主仍是以查詢操做爲主,以及各類類型的 sql 大體的執行比例是多少。對於更新操做的計數,是對執行次數的計數,不論提交仍是回滾都會進行累加。
對於事務型的應用,經過 Com_commit 和 Com_rollback 能夠了解事務提交和回滾的狀況,對於回滾操做很是頻繁的數據庫,可能意味着應用編寫存在問題。
此外,如下幾個參數便於用戶瞭解數據庫的基本狀況:sql
測試數據庫地址:https://downloads.mysql.com/d...數據庫
統計某個 email 爲租賃電影拷貝所支付的總金額,須要關聯客戶表 customer 和 付款表 payment , 而且對付款金額 amount 字段作求和(sum) 操做,相應的執行計劃以下:json
mysql> explain select sum(amount) from customer a , payment b where a.customer_id= b.customer_id and a.email='JANE.BENNETT@sakilacustomer.org'\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 599 filtered: 10.00 Extra: Using where *************************** 2. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.a.customer_id rows: 26 filtered: 100.00 Extra: NULL 2 rows in set, 1 warning (0.00 sec)
select_type: 表示 select 類型,常見的取值有:服務器
type=ALL,全表掃描,mysql 遍歷全表來找到匹配的行:session
mysql> explain select * from film where rating > 9 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: film partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1000 filtered: 33.33 Extra: Using where 1 row in set, 1 warning (0.01 sec)
type=index, 索引全掃描,mysql 遍歷整個索引來查詢匹配的行性能
mysql> explain select title form film\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: film partitions: NULL type: index possible_keys: NULL key: idx_title key_len: 767 ref: NULL rows: 1000 filtered: 100.00 Extra: Using index 1 row in set, 1 warning (0.00 sec)
type=range,索引範圍掃描,常見於<、<=、>、>=、between等操做:測試
mysql> explain select * from payment where customer_id >= 300 and customer_id <= 350 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: payment partitions: NULL type: range possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: NULL rows: 1350 filtered: 100.00 Extra: Using index condition 1 row in set, 1 warning (0.07 sec)
type=ref, 使用非惟一索引掃描或惟一索引的前綴掃描,返回匹配某個單獨值的記錄行,例如:優化
mysql> explain select * from payment where customer_id = 350 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: payment partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: const rows: 23 filtered: 100.00 Extra: NULL 1 row in set, 1 warning (0.01 sec)
索引 idx_fk_customer_id 是非惟一索引,查詢條件爲等值查詢條件 customer_id = 350, 因此掃描索引的類型爲 ref。ref 還常常出如今 join 操做中:
mysql> explain select b.*, a.* from payment a,customer b where a.customer_id = b.customer_id \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 599 filtered: 100.00 Extra: NULL *************************** 2. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.b.customer_id rows: 26 filtered: 100.00 Extra: NULL 2 rows in set, 1 warning (0.00 sec)
type=eq_ref,相似 ref,區別就在使用的索引時惟一索引,對於每一個索引的鍵值,表中只要一條記錄匹配;簡單的說,就是多表鏈接中使用 primary key 或者 unique index 做爲關聯條件。
mysql> explain select * from film a , film_text b where a.film_id = b.film_id \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 1000 filtered: 100.00 Extra: NULL *************************** 2. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: eq_ref possible_keys: PRIMARY key: PRIMARY key_len: 2 ref: sakila.b.film_id rows: 1 filtered: 100.00 Extra: Using where 2 rows in set, 1 warning (0.03 sec)
type=const/system,單表中最多有一個匹配行,查起來很是迅速,因此這個匹配行中的其餘列的值能夠被優化器在當前查詢中看成常量來處理,例如,根據主鍵 primary key 或者惟一索引 unique index 進行查詢。
mysql> create table test_const ( -> test_id int, -> test_context varchar(10), -> primary key (`test_id`), -> ); insert into test_const values(1,'hello'); explain select * from ( select * from test_const where test_id=1 ) a \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: test_const partitions: NULL type: const possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: const rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 1 warning (0.00 sec)
type=null, mysql 不用訪問表或者索引,直接就可以獲得結果:
mysql> explain select 1 from dual where 1 \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: NULL partitions: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL filtered: NULL Extra: No tables used 1 row in set, 1 warning (0.00 sec)
類型 type 還有其餘值,如 ref_or_null (與 ref 相似,區別在於條件中包含對 null 的查詢)、index_merge(索引合併優化)、unique_subquery (in 的後面是一個查詢主鍵字段的子查詢)、index_subquery(與 unique_subquery 相似,區別在於 in 的後面是查詢非惟一索引字段的子查詢)等。
執行explain 後再執行 show warnings,能夠看到sql 真正被執行以前優化器作了哪些 sql 改寫:
MySQL [sakila]> explain select sum(amount) from customer a , payment b where 1=1 and a.customer_id = b.customer_id and email = 'JANE.BENNETT@sakilacustomer.org'\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: a partitions: NULL type: ALL possible_keys: PRIMARY key: NULL key_len: NULL ref: NULL rows: 599 filtered: 10.00 Extra: Using where *************************** 2. row *************************** id: 1 select_type: SIMPLE table: b partitions: NULL type: ref possible_keys: idx_fk_customer_id key: idx_fk_customer_id key_len: 2 ref: sakila.a.customer_id rows: 26 filtered: 100.00 Extra: NULL 2 rows in set, 1 warning (0.00 sec) MySQL [sakila]> show warnings; +-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Level | Code | Message | +-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Note | 1003 | /* select#1 */ select sum(`sakila`.`b`.`amount`) AS `sum(amount)` from `sakila`.`customer` `a` join `sakila`.`payment` `b` where ((`sakila`.`b`.`customer_id` = `sakila`.`a`.`customer_id`) and (`sakila`.`a`.`email` = 'JANE.BENNETT@sakilacustomer.org')) | +-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec)
從 warning 的 message 字段中可以看到優化器自動去除了 1=1 恆成立的條件,也就是說優化器在改寫 sql 時會自動去掉恆成立的條件。
MySQL [sakila]> CREATE TABLE `customer_part` ( -> `customer_id` smallint(5) unsigned NOT NULL AUTO_INCREMENT, -> `store_id` tinyint(3) unsigned NOT NULL, -> `first_name` varchar(45) NOT NULL, -> `last_name` varchar(45) NOT NULL, -> `email` varchar(50) DEFAULT NULL, -> `address_id` smallint(5) unsigned NOT NULL, -> `active` tinyint(1) NOT NULL DEFAULT '1', -> `create_date` datetime NOT NULL, -> `last_update` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -> PRIMARY KEY (`customer_id`) -> -> ) partition by hash (customer_id) partitions 8; Query OK, 0 rows affected (0.06 sec) MySQL [sakila]> insert into customer_part select * from customer; Query OK, 599 rows affected (0.06 sec) Records: 599 Duplicates: 0 Warnings: 0 MySQL [sakila]> explain select * from customer_part where customer_id=130\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: customer_part partitions: p2 type: const possible_keys: PRIMARY key: PRIMARY key_len: 2 ref: const rows: 1 filtered: 100.00 Extra: NULL 1 row in set, 1 warnings (0.00 sec)
能夠看到 sql 訪問的分區是 p2。
舊版本的 mysql 可使用 profiles 分析 sql 性能,我用的是5.7.18的版本,已經不容許使用 profiles 了,推薦用
performance_schema 分析sql。
mysql5.6 提供了對 sql 的跟蹤 trace,能夠進一步瞭解爲何優化器選擇 A 執行計劃而不是 B 執行計劃,幫助咱們更好的理解優化器的行爲。
使用方式:首先打開 trace ,設置格式爲 json,設置 trace 最大可以使用的內存大小,避免解析過程當中由於默認內存太小而不可以完整顯示。
MySQL [sakila]> set optimizer_trace="enabled=on",end_markers_in_json=on; Query OK, 0 rows affected (0.00 sec) MySQL [sakila]> set optimizer_trace_max_mem_size=1000000; Query OK, 0 rows affected (0.00 sec)
接下來執行想作 trace 的 sql 語句,例如像瞭解租賃表 rental 中庫存編號 inventory_id 爲 4466 的電影拷貝在出租日期 rental_date 爲 2005-05-25 4:00:00 ~ 5:00:00 之間出租的記錄:
mysql> select rental_id from rental where 1=1 and rental_date >= '2005-05-25 04:00:00' and rental_date <= '2005-05-25 05:00:00' and inventory_id=4466; +-----------+ | rental_id | +-----------+ | 39 | +-----------+ 1 row in set (0.06 sec) MySQL [sakila]> select * from information_schema.optimizer_trace\G *************************** 1. row *************************** QUERY: select * from infomation_schema.optimizer_trace TRACE: { "steps": [ ] /* steps */ } MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0 INSUFFICIENT_PRIVILEGES: 0 1 row in set (0.00 sec)
通過以上步驟,基本就能夠確認問題出現的緣由。此時能夠根據狀況採起相應的措施,進行優化以提升執行的效率。