一 準備實驗數據算法
1.1.下載數據json
wget http://snap.stanford.edu/data/amazon/all.txt.gz
1.2.數據分析bash
1.2.1.數據格式app
product/productId: B00006HAXW product/title: Rock Rhythm & Doo Wop: Greatest Early Rock product/price: unknown review/userId: A1RSDE90N6RSZF review/profileName: Joseph M. Kotow review/helpfulness: 9/9 review/score: 5.0 review/time: 1042502400 review/summary: Pittsburgh - Home of the OLDIES review/text: I have all of the doo wop DVD's and this one is as good or better than the 1st ones. Remember once these performers are gone, we'll never get to see them again. Rhino did an excellent job and if you like or love doo wop and Rock n Roll you'll LOVE this DVD !!
而,this
1.2.2.數據格式轉換spa
首先,咱們須要把原始數據格式轉換成dictionary.net
import pandas as pd import numpy as np import datetime import gzip import json from sklearn.decomposition import PCA from myria import * import simplejson def parse(filename): f = gzip.open(filename, 'r') entry = {} for l in f: l = l.strip() colonPos = l.find(':') if colonPos == -1: yield entry entry = {} continue eName = l[:colonPos] rest = l[colonPos+2:] entry[eName] = rest yield entry f = gzip.open('somefile.gz', 'w') #review_data = parse('kcore_5.json.gz') for e in parse("kcore_5.json.gz"): f.write(str(e)) f.close()
py文件執行時報錯: string indices must be intergers
unix
分析緣由:rest
在.py文件中寫的data={"a":"123","b":"456"},data類型爲dictexcel
而在.py文件中經過data= arcpy.GetParameter(0) 獲取在GP中傳過來的參數{"a":"123","b":"456"},data類型爲字符串!!!
因此在後續的.py中用到的data['a']就會報如上錯誤!!!
解決方案:
data= arcpy.GetParameter(0)
data=json.loads(data) //將字符串轉成json格式
或
data=eval(data) #本程序中咱們採用eval()的方式,將字符串轉成dict格式
二.數據預處理
思路:
#import libraries
# Helper functions
# Prepare the review data for training and testing the algorithms
# Preprocess product data for Content-based Recommender System
# Upload the data to the MySQL Database on an Amazon Web Services ( AWS) EC2 instance
2.1建立DataFrame
f parse(path): f = gzip.open(path, 'r') for l in f: yield eval(l) review_data = parse('/kcore_5.json.gz') productID = [] userID = [] score = [] reviewTime = [] rowCount = 0 while True: try: entry = next(review_data) productID.append(entry['asin']) userID.append(entry['reviewerID']) score.append(entry['overall']) reviewTime.append(entry['reviewTime']) rowCount += 1 if rowCount % 1000000 == 0: print 'Already read %s observations' % rowCount except StopIteration, e: print 'Read %s observations in total' % rowCount entry_list = pd.DataFrame({'productID': productID, 'userID': userID, 'score': score, 'reviewTime': reviewTime}) filename = 'review_data.csv' entry_list.to_csv(filename, index=False) print 'Save the data in the file %s' % filename break entry_list = pd.read_csv('review_data.csv')
2.2數據過濾
def filterReviewsByField(reviews, field, minNumReviews): reviewsCountByField = reviews.groupby(field).size() fieldIDWithNumReviewsPlus = reviewsCountByField[reviewsCountByField >= minNumReviews].index #print 'The number of qualified %s: ' % field, fieldIDWithNumReviewsPlus.shape[0] if len(fieldIDWithNumReviewsPlus) == 0: print 'The filtered reviews have become empty' return None else: return reviews[reviews[field].isin(fieldIDWithNumReviewsPlus)] def checkField(reviews, field, minNumReviews): return np.mean(reviews.groupby(field).size() >= minNumReviews) == 1 def filterReviews(reviews, minItemNumReviews, minUserNumReviews): filteredReviews = filterReviewsByField(reviews, 'productID', minItemNumReviews) if filteredReviews is None: return None if checkField(filteredReviews, 'userID', minUserNumReviews): return filteredReviews filteredReviews = filterReviewsByField(filteredReviews, 'userID', minUserNumReviews) if filteredReviews is None: return None if checkField(filteredReviews, 'productID', minItemNumReviews): return filteredReviews else: return filterReviews(filteredReviews, minItemNumReviews, minUserNumReviews) def filteredReviewsInfo(reviews, minItemNumReviews, minUserNumReviews): t1 = datetime.datetime.now() filteredReviews = filterReviews(reviews, minItemNumReviews, minUserNumReviews) print 'Mininum num of reviews in each item: ', minItemNumReviews print 'Mininum num of reviews in each user: ', minUserNumReviews print 'Dimension of filteredReviews: ', filteredReviews.shape if filteredReviews is not None else '(0, 4)' print 'Num of unique Users: ', filteredReviews['userID'].unique().shape[0] print 'Num of unique Product: ', filteredReviews['productID'].unique().shape[0] t2 = datetime.datetime.now() print 'Time elapsed: ', t2 - t1 return filteredReviews allReviewData = filteredReviewsInfo(entry_list, 100, 10) smallReviewData = filteredReviewsInfo(allReviewData, 150, 15)
理論知識
1. Combining predictions for accurate recommender systems
So, for practical applications we recommend to use a neural network in combination with bagging due to the fast prediction speed.
Collaborative ltering(協同過濾,篩選類似的推薦):電子商務推薦系統的主要算法,利用某興趣相投、擁有共同經驗之羣體的喜愛來推薦用戶感興趣的信息