在Kubernetes中,Pod是應用程序的載體,咱們能夠經過Pod的IP來訪問應用程序,可是Pod的IP地址不是固定的,這就意味着不方便直接採用Pod的IP對服務進行訪問。html
爲了解決這個問題,Kubernetes提供了Service資源,Service會對提供同一個服務的多個Pod進行聚合,而且提供一個統一的入口地址,經過訪問Service的入口地址就能訪問到後面的Pod服務。
node
Service在不少狀況下只是一個概念,真正起做用的實際上是kube-proxy服務進程,每一個Node節點上都運行了一個kube-proxy的服務進程。當建立Service的時候會經過API Server向etcd寫入建立的Service的信息,而kube-proxy會基於監聽的機制發現這種Service的變化,而後它會將最新的Service信息轉換爲對應的訪問規則。nginx
kube-proxy目前支持三種工做模式:git
userspace模式:github
userspace模式下,kube-proxy會爲每個Service建立一個監聽端口,發向Cluster IP的請求被iptables規則重定向到kube-proxy監聽的端口上,kube-proxy根據LB算法(負載均衡算法)選擇一個提供服務的Pod並和其創建鏈接,以便將請求轉發到Pod上。算法
該模式下,kube-proxy充當了一個四層負載均衡器的角色。因爲kube-proxy運行在userspace中,在進行轉發處理的時候會增長內核和用戶空間之間的數據拷貝,雖然比較穩定,可是效率很是低下。shell
iptables模式後端
iptables模式下,kube-proxy爲Service後端的每一個Pod建立對應的iptables規則,直接將發向Cluster IP的請求重定向到一個Pod的IP上。api
該模式下kube-proxy不承擔四層負載均衡器的角色,只負責建立iptables規則。該模式的優勢在於較userspace模式效率更高,可是不能提供靈活的LB策略,當後端Pod不可用的時候沒法進行重試。瀏覽器
ipvs模式
ipvs模式和iptables相似,kube-proxy監控Pod的變化並建立相應的ipvs規則。ipvs相對iptables轉發效率更高,除此以外,ipvs支持更多的LB算法。
開啓ipvs(必須安裝ipvs內核模塊,不然會降級爲iptables)
kubectl edit cm kube-proxy -n kube-system # 找到mode,添加"ipvs"
# 刪除原來標籤爲kube-proxy的pod kubectl delete pod -l k8s-app=kube-proxy -n kube-system # 測試ipvs模塊是否開啓成功 ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 172.17.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.209.140:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.219.64:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.96.0.1:443 rr -> 192.168.209.140:6443 Masq 1 0 0 TCP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0 0 TCP 10.96.0.10:9153 rr -> 10.244.0.2:9153 Masq 1 0 0 -> 10.244.0.3:9153 Masq 1 0 0 TCP 10.96.178.15:80 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.244.0.0:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.244.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 127.0.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 UDP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0
Service的資源清單:
apiVersion: v1 # 版本 kind: Service # 類型 metadata: # 元數據 name: # 資源名稱 namespace: # 命名空間 spec: selector: # 標籤選擇器,用於肯定當前Service代理那些Pod app: nginx type: NodePort # Service的類型,指定Service的訪問方式 clusterIP: # 虛擬服務的IP地址 sessionAffinity: # session親和性,支持ClientIP、None兩個選項,默認值爲None ports: # 端口信息 - port: 8080 # Service端口 protocol: TCP # 協議 targetPort : # Pod端口 nodePort: # 主機端口
spec.type說明:
ClusterIP:默認值,它是Kubernetes系統自動分配的虛擬IP,只能在集羣內部訪問。
NodePort:將Service經過指定的Node上的端口暴露給外部,經過此方法,就能夠在集羣外部訪問服務。
LoadBalancer:使用外接負載均衡器完成到服務的負載分發,注意此模式須要外部雲環境的支持。
ExternalName:把集羣外部的服務引入集羣內部,直接使用。
在使用Service以前,首先利用Deployment建立三個Pod,爲pod設置app=ngxinx-pod
標籤。
# 建立deployment.yaml文件 apiVersion: apps/v1 kind: Deployment metadata: name: pc-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: nginx-pod template: metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1 ports: - containerPort: 80
建立和查看Pod的信息
# 建立 kubectl create -f deployment.yaml # 查看 kubectl get pods -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pc-deployment-7d7dd5499b-6gmxf 1/1 Running 0 9m 192.168.104.3 node2 <none> <none> pc-deployment-7d7dd5499b-xfn7w 1/1 Running 0 9m 192.168.104.1 node2 <none> <none> pc-deployment-7d7dd5499b-zdllp 1/1 Running 0 9m 192.168.166.130 node1 <none> <none>
爲了後面測試方便,修改三個Pod中Nginx的index.html
# 此處只展現了一個,其餘兩個操做相同。 # 進入容器內部 kubectl exec -it pc-deployment-7d7dd5499b-6gmxf -n dev /bin/sh # 修改index.html,將本來內容替換成Pod對應的ip echo "192.168.104.3 > /usr/share/nginx/html/index.html
修改完畢後,進行測試訪問
curl 192.168.104.3 > 192.168.104.3 curl 192.168.104.1 > 192.168.104.1 curl 192.168.166.130 > 192.168.166.130
1)、建立Service
# 建立service-clusterip.yaml文件 apiVersion: v1 kind: Service metadata: name: service-clusterip namespace: dev spec: selector: app: nginx-pod clusterIP: 10.97.97.97 # service的IP地址,若是不寫,默認會生成一個 type: ClusterIP ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口
2)、建立Service以及查看
# 建立 kubectl create -f service-clusterip.yaml # 查看 kubectl get svc -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-clusterip ClusterIP 10.97.97.97 <none> 80/TCP 44s app=nginx-pod # 查看詳細信息 kubectl describe svc service-clusterip -n dev Name: service-clusterip Namespace: dev Labels: <none> Annotations: <none> Selector: app=nginx-pod Type: ClusterIP IP: 10.97.97.97 Port: <unset> 80/TCP TargetPort: 80/TCP Endpoints: 192.168.104.1:80,192.168.104.3:80,192.168.166.130:80 # Endpoints列表裏就是當前Service能夠負載到的服務入口 Session Affinity: None Events: <none>
Endpoint是Kubernetes中的一個資源對象,存儲在etcd中,用來記錄一個service對應的全部Pod的訪問地址,它是根據service配置文件中的selector描述產生的。
一個service由一組Pod組成,這些Pod經過Endpoints暴露出來,Endpoints是實現實際服務的端點集合。換言之,service和Pod之間的聯繫是經過Endpoints實現的。
# 查看Endpoint kubectl get endpoints -n dev -o wide NAME ENDPOINTS AGE service-clusterip 192.168.104.1:80,192.168.104.3:80,192.168.166.130:80 9m24s
3)、查看ipvs的映射規則
ipvsadm -Ln IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 172.17.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.209.140:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 192.168.219.64:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.96.0.1:443 rr -> 192.168.209.140:6443 Masq 1 0 0 TCP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0 0 TCP 10.96.0.10:9153 rr -> 10.244.0.2:9153 Masq 1 0 0 -> 10.244.0.3:9153 Masq 1 0 0 TCP 10.96.178.15:80 rr -> 192.168.104.2:80 Masq 1 0 0 # 這塊是否是很眼熟了,rr表示輪詢 TCP 10.97.97.97:80 rr -> 192.168.104.1:80 Masq 1 0 0 -> 192.168.104.3:80 Masq 1 0 0 -> 192.168.166.130:80 Masq 1 0 0 # ------------------------------- TCP 10.244.0.0:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 10.244.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 TCP 127.0.0.1:32176 rr -> 192.168.104.2:80 Masq 1 0 0 UDP 10.96.0.10:53 rr -> 10.244.0.2:53 Masq 1 0 0 -> 10.244.0.3:53 Masq 1 0 0
4)、訪問10.97.97.97.80
while true;do curl 10.97.97.97:80; sleep 2;done; # 輪詢效果 192.168.104.3 192.168.104.1 192.168.166.130 192.168.104.3 192.168.104.1 192.168.166.130 192.168.104.3 ......
5)、負載分發策略
對Service的訪問被分發到了後端的Pod上去,目前Kubernetes提供了兩種負載分發策略:
若是不定義,默認使用kube-proxy的策略,好比隨機、輪詢等。
基於客戶端地址的會話保持模式,即來自同一個客戶端發起的全部請求都會轉發到固定的一個Pod上,這對於傳統基於Session的認證項目來講很友好,此模式能夠在spec中添加sessionAffinity: ClusterIP
選項。
修改分發策略:
apiVersion: v1 kind: Service metadata: name: service-clusterip namespace: dev spec: selector: app: nginx-pod clusterIP: 10.97.97.97 # service的IP地址,若是不寫,默認會生成一個 type: ClusterIP sessionAffinity: ClientIP # 修改分發策略爲基於客戶端地址的會話保持模式 ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口
更新svc以及訪問
# 更新 kubectl apply -f service-clusterip.yaml # 訪問 while true;do curl 10.97.97.97:80; sleep 2;done; 192.168.166.130 192.168.166.130 192.168.166.130 192.168.166.130 192.168.166.130 192.168.166.130 ....
在某些場景中,開發人員可能不想使用Service提供的負載均衡功能,而但願本身來控制負載均衡策略,針對這種狀況,Kubernetes提供了HeadLinesss Service,這類Service不會分配Cluster IP,若是想要訪問Service,只能經過Service的域名進行查詢。
1)、建立Service
# 建立service-headliness.yaml apiVersion: v1 kind: Service metadata: name: service-headliness namespace: dev spec: selector: app: nginx-pod clusterIP: None # 將clusterIP設置爲None,便可建立headliness Service type: ClusterIP ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口
2)、查看詳情
kubectl describe svc service-headliness -n dev Name: service-headliness Namespace: dev Labels: <none> Annotations: Selector: app=nginx-pod Type: ClusterIP IP: None Port: <unset> 80/TCP TargetPort: 80/TCP Endpoints: 192.168.104.1:80,192.168.104.3:80,192.168.166.130:80 Session Affinity: None Events: <none>
3)、查看域名解析狀況
# 查看pod kubectl get pod -n dev NAME READY STATUS RESTARTS AGE pc-deployment-7d7dd5499b-6gmxf 1/1 Running 0 26m pc-deployment-7d7dd5499b-xfn7w 1/1 Running 0 26m pc-deployment-7d7dd5499b-zdllp 1/1 Running 0 26m # 進入Pod中,執行cat /etc/resolv.conf命令 kubectl exec -it pc-deployment-7d7dd5499b-6gmxf -n dev /bin/sh # cat /etc/resolv.conf nameserver 10.96.0.10 search dev.svc.cluster.local svc.cluster.local cluster.local options ndots:5
4)、經過Service的域名進行查詢
yum -y install bind-utils dig @10.96.0.10 service-headliness.dev.svc.cluster.local ; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.5 <<>> @10.96.0.10 service-headliness.dev.svc.cluster.local ; (1 server found) ;; global options: +cmd ;; Got answer: ;; WARNING: .local is reserved for Multicast DNS ;; You are currently testing what happens when an mDNS query is leaked to DNS ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13705 ;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;service-headliness.dev.svc.cluster.local. IN A ;; ANSWER SECTION: service-headliness.dev.svc.cluster.local. 30 IN A 192.168.104.3 service-headliness.dev.svc.cluster.local. 30 IN A 192.168.104.1 service-headliness.dev.svc.cluster.local. 30 IN A 192.168.166.130 ;; Query time: 1 msec ;; SERVER: 10.96.0.10#53(10.96.0.10) ;; WHEN: Tue Aug 10 17:27:25 CST 2021 ;; MSG SIZE rcvd: 237
在以前的案例中,建立的Service的IP地址只能在集羣內部才能夠訪問,若是但願Service暴露給集羣外部使用,那麼就須要使用到另一種類型的Service,稱爲NodePort類型的Service。NodePort的工做原理就是將Service的端口映射到Node的一個端口上,而後就能夠經過NodeIP:NodePort
來訪問Service了。
1)、建立Service
apiVersion: v1 kind: Service metadata: name: service-nodeport namespace: dev spec: selector: app: nginx-pod type: NodePort # Service類型爲NodePort ports: - port: 80 # Service的端口 targetPort: 80 # Pod的端口 nodePort: 30002 # 指定綁定的node的端口 #(默認取值範圍是30000~32767),若是不指定,會默認分配
2)、查看Service
kubectl get svc service-nodeport -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR service-nodeport NodePort 10.102.12.251 <none> 80:30002/TCP 17s app=nginx-pod
3)、訪問
經過瀏覽器訪問:http://192.168.209.140:30002
LoadBalancer和NodePort很類似,目的都是向外部暴露一個端口,區別在於LoadBalancer會在集羣的外部再來作一個負載均衡設備,而這個設備須要外部環境的支持,外部服務發送到這個設備上的請求,會被設備負載以後轉發到集羣中。
ExternalName類型的Service用於引入集羣外部的服務,它經過externalName屬性指定一個服務的地址,而後在集羣內部訪問此Service就能夠訪問到外部的服務了。
1)、建立service-externalname.yaml
apiVersion: v1 kind: Service metadata: name: service-externalname namespace: dev spec: type: ExternalName # Service類型爲ExternalName externalName: www.baidu.com # 改爲IP地址也能夠
2)、域名解析
dig @10.96.0.10 service-externalname.dev.svc.cluster.local <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.5 <<>> @10.96.0.10 service-externalname.dev.svc.cluster.local ; (1 server found) ;; global options: +cmd ;; Got answer: ;; WARNING: .local is reserved for Multicast DNS ;; You are currently testing what happens when an mDNS query is leaked to DNS ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65339 ;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;service-externalname.dev.svc.cluster.local. IN A ;; ANSWER SECTION: service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com. www.baidu.com. 30 IN CNAME www.a.shifen.com. www.a.shifen.com. 30 IN A 14.215.177.38 www.a.shifen.com. 30 IN A 14.215.177.39 ;; Query time: 29 msec ;; SERVER: 10.96.0.10#53(10.96.0.10) ;; WHEN: Tue Aug 10 17:51:15 CST 2021 ;; MSG SIZE rcvd: 247
咱們已經知道,Service對集羣以外暴露服務的主要方式有兩種:NodePort和LoadBalancer,可是這兩種方式,都有必定的缺點:
基於這種現狀,Kubernetes提供了Ingress資源對象,Ingress只須要一個NodePort或者一個LB就能夠知足暴露多個Service的需求,工做機制大體以下圖所示:
實際上,Ingress至關於一個七層的負載均衡器,是Kubernetes對反向代理的一個抽象,它的工做原理相似於Nginx,能夠理解爲Ingress裏面創建了諸多映射規則,Ingress Controller經過監聽這些配置規則並轉化爲Nginx的反向代理配置,而後對外提供服務。
Ingress:Kubernetes中的一個對象,做用是定義請求如何轉發到Service的規則。
Ingress Controller:具體實現反向代理及負載均衡的程序,對Ingress定義的規則進行解析,根據配置的規則來實現請求轉發,實現的方式有不少,好比Nginx,Contour,Haproxy等。
Ingress(以Nginx)的工做原理以下:
一、用戶編寫Ingress規則,說明那個域名對應Kubernetes集羣中的那個Service。
二、Ingress控制器動態感知Ingress服務規則的變化,而後生成一段對應的Nginx的反向代理配置。
三、Ingress控制器會將生成的Nginx配置寫入到一個運行着的Nginx服務中,並動態更新。
四、到此爲止,其實真正在工做的就是一個Nginx了,內部配置了用戶定義的請求規則。
一、搭建Ingress環境
建立文件夾,並進入到此文件夾
mkdir ingress-controller && cd ingress-controller
二、獲取Ingress-nginx,本次使用的是0.30版本
wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/baremetal/service-nodeport.yaml
三、建立Ingress-nginx以及查看:
# 建立 kubeclt apply -f ./ # 查看pod kubectl get pod -n ingress-nginx NAME READY STATUS RESTARTS AGE nginx-ingress-controller-5bb8fb4bb6-mn8xp 1/1 Running 0 37s # 查看Service kubectl get svc -n ingress-nginx NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE ingress-nginx NodePort 10.110.119.41 <none> 80:30994/TCP,443:30693/TCP 2m27s
爲了後面的實驗比較方便,建立以下圖所示的模型:
1)、建立tomcat-nginx.yaml
apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: nginx-pod template: metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1 ports: - containerPort: 80 --- apiVersion: apps/v1 kind: Deployment metadata: name: tomcat-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: tomcat-pod template: metadata: labels: app: tomcat-pod spec: containers: - name: tomcat image: tomcat:8.5-jre10-slim ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: nginx-service namespace: dev spec: selector: app: nginx-pod clusterIP: None type: ClusterIP ports: - port: 80 targetPort: 80 --- apiVersion: v1 kind: Service metadata: name: tomcat-service namespace: dev spec: selector: app: tomcat-pod clusterIP: None type: ClusterIP ports: - port: 8080 targetPort: 8080
2)、建立Service和Pod以及查看
# 建立 kubectl create -f tomcat-ngxin.yaml deployment.apps/nginx-deployment created deployment.apps/tomcat-deployment created service/nginx-service created service/tomcat-service created # 查看 kubectl get svc,pod -n dev NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/nginx-service ClusterIP None <none> 80/TCP 2m18s service/service-externalname ExternalName <none> www.baidu.com <none> 118m service/service-headliness ClusterIP None <none> 80/TCP 157m service/service-nodeport NodePort 10.102.12.251 <none> 80:30002/TCP 132m service/tomcat-service ClusterIP None <none> 8080/TCP 2m18s NAME READY STATUS RESTARTS AGE pod/nginx-deployment-7d7dd5499b-nv7n6 1/1 Running 0 2m18s pod/nginx-deployment-7d7dd5499b-p7ndx 1/1 Running 0 2m18s pod/nginx-deployment-7d7dd5499b-qfqpp 1/1 Running 0 2m18s pod/pc-deployment-7d7dd5499b-6gmxf 1/1 Running 0 3h1m pod/pc-deployment-7d7dd5499b-xfn7w 1/1 Running 0 3h1m pod/pc-deployment-7d7dd5499b-zdllp 1/1 Running 0 3h1m pod/tomcat-deployment-7d5fcd4756-82xd4 1/1 Running 0 2m18s pod/tomcat-deployment-7d5fcd4756-8gz84 1/1 Running 0 2m18s pod/tomcat-deployment-7d5fcd4756-pv7zw 1/1 Running 0 2m18s
1)、建立ingress-http.yaml
apiVersion: extensions/v1beta1 kind: Ingress metadata: name: ingress-http namespace: dev spec: rules: - host: nginx.negan.com http: paths: - path: / backend: serviceName: nginx-service servicePort: 80 - host: tomcat.negan.com http: paths: - path: / backend: serviceName: tomcat-service servicePort: 8080
2)、建立以及查看
# 建立 kubectl apply -f ingress-http.yaml # 查看 kubectl get ingress -n dev NAME CLASS HOSTS ADDRESS PORTS AGE ingress-http <none> nginx.negan.com,tomcat.negan.com 80 5s # 查看詳情 kubectl describe ingress ingress-http -n dev Name: ingress-http Namespace: dev Address: 10.110.119.41 Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>) Rules: Host Path Backends ---- ---- -------- nginx.negan.com / nginx-service:80 (192.168.104.1:80,192.168.104.3:80,192.168.104.5:80 + 3 more...) tomcat.negan.com / tomcat-service:8080 (192.168.104.4:8080,192.168.104.6:8080,192.168.166.134:8080) Annotations: Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal CREATE 90s nginx-ingress-controller Ingress dev/ingress-http Normal UPDATE 60s nginx-ingress-controller Ingress dev/ingress-http
3)、測試訪問
在本機的hosts文件中添加以下的規則 (ip爲主機master)
# C:\Windows\System32\drivers\etc\hosts 192.168.209.140 nginx.negan.com 192.168.209.140 tomcat.negan.com
查看ingress-nginx暴露的端口
kubectl get svc -n ingress-nginx kubectl get svc -n ingress-nginx NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE ingress-nginx NodePort 10.110.119.41 <none> 80:30994/TCP,443:30693/TCP 23m
經過瀏覽器訪問:http://nginx.negan.com:30994 和 http://tomcat.negan.com:30994
1)、生成證書
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=xudaxian.com"
2)、建立密鑰
kubectl create secret tls tls-secret --key tls.key --cert tls.crt
3)、建立ingress-https.yaml
apiVersion: extensions/v1beta1 kind: Ingress metadata: name: ingress-https namespace: dev spec: tls: - hosts: - nginx.xudaxian.com - tomcat.xudaxian.com secretName: tls-secret # 指定祕鑰 rules: - host: nginx.negan.com http: paths: - path: / backend: serviceName: nginx-service servicePort: 80 - host: tomcat.negan.com http: paths: - path: / backend: serviceName: tomcat-service servicePort: 8080
4)、建立和查看
# 建立 kubectl create -f ingress-https.yaml # 查看 kubectl get ingress ingress-https -n dev NAME CLASS HOSTS ADDRESS PORTS AGE ingress-https <none> nginx.negan.com,tomcat.negan.com 80, 443 3s # 查看詳情 Name: ingress-https Namespace: dev Address: Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>) TLS: tls-secret terminates nginx.negan.com,tomcat.negan.com Rules: Host Path Backends ---- ---- -------- nginx.negan.com / nginx-service:80 (192.168.104.1:80,192.168.104.3:80,192.168.104.5:80 + 3 more...) tomcat.negan.com / tomcat-service:8080 (192.168.104.4:8080,192.168.104.6:8080,192.168.166.134:8080) Annotations: <none> Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal CREATE 41s nginx-ingress-controller Ingress dev/ingress-https
5)、訪問
經過瀏覽器訪問:https://nginx.negan.com:30693和 https://tomcat.negan.com:30693