Liveness:
代表是否容器正在運行。若是liveness探測爲fail,則kubelet會kill掉容器,而且會觸發restart設置的策略。默認不設置的狀況下,該狀態爲success.
Readiness:
代表容器是否能夠接受服務請求。若是readiness探測失敗,則endpoints控制器會從endpoints中摘除該Pod IP。在初始化延遲探測時間以前,默認是Failure。若是沒有設置readiness探測,該狀態爲success。shell
基於Kubernetes 1.11.0json
在kubelet啓動是時候會啓動健康檢查的探測:
kubelet.go中Run方法緩存
... kl.probeManager.Start() //啓動探測服務 ...
prober_manager.go中咱們看一下這段代碼:app
// Manager manages pod probing. It creates a probe "worker" for every container that specifies a // probe (AddPod). The worker periodically probes its assigned container and caches the results. The // manager use the cached probe results to set the appropriate Ready state in the PodStatus when // requested (UpdatePodStatus). Updating probe parameters is not currently supported. // TODO: Move liveness probing out of the runtime, to here. type Manager interface { // AddPod creates new probe workers for every container probe. This should be called for every // pod created. AddPod(pod *v1.Pod) // RemovePod handles cleaning up the removed pod state, including terminating probe workers and // deleting cached results. RemovePod(pod *v1.Pod) // CleanupPods handles cleaning up pods which should no longer be running. // It takes a list of "active pods" which should not be cleaned up. CleanupPods(activePods []*v1.Pod) // UpdatePodStatus modifies the given PodStatus with the appropriate Ready state for each // container based on container running status, cached probe results and worker states. UpdatePodStatus(types.UID, *v1.PodStatus) // Start starts the Manager sync loops. Start() }
這是一個Manager的接口聲明,該Manager負載pod的探測。當執行AddPod時,會爲Pod中每個容器建立一個執行探測任務的worker, 該worker會對所分配的容器進行週期性的探測,並把探測結果緩存。當UpdatePodStatus方法執行時,該manager會使用探測的緩存結果設置PodStatus爲近似Ready的狀態:
socket
type Probe struct { // The action taken to determine the health of a container Handler `json:",inline" protobuf:"bytes,1,opt,name=handler"` // Number of seconds after the container has started before liveness probes are initiated. // More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes // +optional InitialDelaySeconds int32 `json:"initialDelaySeconds,omitempty" protobuf:"varint,2,opt,name=initialDelaySeconds"` // Number of seconds after which the probe times out. // Defaults to 1 second. Minimum value is 1. // More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes // +optional TimeoutSeconds int32 `json:"timeoutSeconds,omitempty" protobuf:"varint,3,opt,name=timeoutSeconds"` // How often (in seconds) to perform the probe. // Default to 10 seconds. Minimum value is 1. // +optional PeriodSeconds int32 `json:"periodSeconds,omitempty" protobuf:"varint,4,opt,name=periodSeconds"` // Minimum consecutive successes for the probe to be considered successful after having failed. // Defaults to 1. Must be 1 for liveness. Minimum value is 1. // +optional SuccessThreshold int32 `json:"successThreshold,omitempty" protobuf:"varint,5,opt,name=successThreshold"` // Minimum consecutive failures for the probe to be considered failed after having succeeded. // Defaults to 3. Minimum value is 1. // +optional FailureThreshold int32 `json:"failureThreshold,omitempty" protobuf:"varint,6,opt,name=failureThreshold"` }
initialDelaySeconds: 表示容器啓動以後延遲多久進行liveness探測
timeoutSeconds:每次執行探測的超時時間
periodSeconds:探測的週期時間
successThreshold:最少連續幾回探測成功的次數,知足該次數則認爲success。
failureThreshold:最少連續幾回探測失敗的次數,知足該次數則認爲failtcp
Handler:
不管是liveness仍是readiness都支持3種類型的探測方式:執行命令、http方式以及tcp方式。ide
// Handler defines a specific action that should be taken // TODO: pass structured data to these actions, and document that data here. type Handler struct { // One and only one of the following should be specified. // Exec specifies the action to take. // +optional Exec *ExecAction `json:"exec,omitempty" protobuf:"bytes,1,opt,name=exec"` // HTTPGet specifies the http request to perform. // +optional HTTPGet *HTTPGetAction `json:"httpGet,omitempty" protobuf:"bytes,2,opt,name=httpGet"` // TCPSocket specifies an action involving a TCP port. // TCP hooks not yet supported // TODO: implement a realistic TCP lifecycle hook // +optional TCPSocket *TCPSocketAction `json:"tcpSocket,omitempty" protobuf:"bytes,3,opt,name=tcpSocket"` }
func (pb *prober) runProbe(probeType probeType, p *v1.Probe, pod *v1.Pod, status v1.PodStatus, container v1.Container, containerID kubecontainer.ContainerID) (probe.Result, string, error) { timeout := time.Duration(p.TimeoutSeconds) * time.Second if p.Exec != nil { glog.V(4).Infof("Exec-Probe Pod: %v, Container: %v, Command: %v", pod, container, p.Exec.Command) command := kubecontainer.ExpandContainerCommandOnlyStatic(p.Exec.Command, container.Env) return pb.exec.Probe(pb.newExecInContainer(container, containerID, command, timeout)) } if p.HTTPGet != nil { scheme := strings.ToLower(string(p.HTTPGet.Scheme)) host := p.HTTPGet.Host if host == "" { host = status.PodIP } port, err := extractPort(p.HTTPGet.Port, container) if err != nil { return probe.Unknown, "", err } path := p.HTTPGet.Path glog.V(4).Infof("HTTP-Probe Host: %v://%v, Port: %v, Path: %v", scheme, host, port, path) url := formatURL(scheme, host, port, path) headers := buildHeader(p.HTTPGet.HTTPHeaders) glog.V(4).Infof("HTTP-Probe Headers: %v", headers) if probeType == liveness { return pb.livenessHttp.Probe(url, headers, timeout) } else { // readiness return pb.readinessHttp.Probe(url, headers, timeout) } } if p.TCPSocket != nil { port, err := extractPort(p.TCPSocket.Port, container) if err != nil { return probe.Unknown, "", err } host := p.TCPSocket.Host if host == "" { host = status.PodIP } glog.V(4).Infof("TCP-Probe Host: %v, Port: %v, Timeout: %v", host, port, timeout) return pb.tcp.Probe(host, port, timeout) } glog.Warningf("Failed to find probe builder for container: %v", container) return probe.Unknown, "", fmt.Errorf("Missing probe handler for %s:%s", format.Pod(pod), container.Name) }
1.執行命令方式
經過newExecInContainer方法調用CRI執行命令:
oop
// ExecAction describes a "run in container" action. type ExecAction struct { // Command is the command line to execute inside the container, the working directory for the // command is root ('/') in the container's filesystem. The command is simply exec'd, it is // not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use // a shell, you need to explicitly call out to that shell. // Exit status of 0 is treated as live/healthy and non-zero is unhealthy. // +optional Command []string `json:"command,omitempty" protobuf:"bytes,1,rep,name=command"` }
2.http GET方式
經過http GET方式進行探測。
Port:表示訪問容器的端口
Host:表示訪問的主機,默認是Pod IPui
// HTTPGetAction describes an action based on HTTP Get requests. type HTTPGetAction struct { // Path to access on the HTTP server. // +optional Path string `json:"path,omitempty" protobuf:"bytes,1,opt,name=path"` // Name or number of the port to access on the container. // Number must be in the range 1 to 65535. // Name must be an IANA_SVC_NAME. Port intstr.IntOrString `json:"port" protobuf:"bytes,2,opt,name=port"` // Host name to connect to, defaults to the pod IP. You probably want to set // "Host" in httpHeaders instead. // +optional Host string `json:"host,omitempty" protobuf:"bytes,3,opt,name=host"` // Scheme to use for connecting to the host. // Defaults to HTTP. // +optional Scheme URIScheme `json:"scheme,omitempty" protobuf:"bytes,4,opt,name=scheme,casttype=URIScheme"` // Custom headers to set in the request. HTTP allows repeated headers. // +optional HTTPHeaders []HTTPHeader `json:"httpHeaders,omitempty" protobuf:"bytes,5,rep,name=httpHeaders"` }
3.tcp方式
經過設置主機和端口便可進行tcp方式訪問url
// TCPSocketAction describes an action based on opening a socket type TCPSocketAction struct { // Number or name of the port to access on the container. // Number must be in the range 1 to 65535. // Name must be an IANA_SVC_NAME. Port intstr.IntOrString `json:"port" protobuf:"bytes,1,opt,name=port"` // Optional: Host name to connect to, defaults to the pod IP. // +optional Host string `json:"host,omitempty" protobuf:"bytes,2,opt,name=host"` }
此處腦洞一下:若是三種探測方式都設置了,會如何執行處理?
經過k8s部署生產環境應用時,建議設置上liveness和readiness, 這也是保障服務穩定性的最佳實踐。
另外因爲Pod Ready不能保證明際的業務應用Ready可用,在最新的 1.14 版本中新增了一個Pod Readiness Gates
特性 。經過這個特性,能夠保證應用Ready後進而設置Pod Ready。
針對上面的腦洞:若是三種探測方式都設置了,會如何執行處理?
答:咱們若是在Pod中設置多個探測方式,提交配置的時候會直接報錯:
此處繼續源代碼:在validation.go中validateHandler中進行了限制(也爲上面Handler struct提到的"One and only one of the following should be specified."提供了事實依據)
func validateHandler(handler *core.Handler, fldPath *field.Path) field.ErrorList { numHandlers := 0 allErrors := field.ErrorList{} if handler.Exec != nil { if numHandlers > 0 { allErrors = append(allErrors, field.Forbidden(fldPath.Child("exec"), "may not specify more than 1 handler type")) } else { numHandlers++ allErrors = append(allErrors, validateExecAction(handler.Exec, fldPath.Child("exec"))...) } } if handler.HTTPGet != nil { if numHandlers > 0 { allErrors = append(allErrors, field.Forbidden(fldPath.Child("httpGet"), "may not specify more than 1 handler type")) } else { numHandlers++ allErrors = append(allErrors, validateHTTPGetAction(handler.HTTPGet, fldPath.Child("httpGet"))...) } } if handler.TCPSocket != nil { if numHandlers > 0 { allErrors = append(allErrors, field.Forbidden(fldPath.Child("tcpSocket"), "may not specify more than 1 handler type")) } else { numHandlers++ allErrors = append(allErrors, validateTCPSocketAction(handler.TCPSocket, fldPath.Child("tcpSocket"))...) } } if numHandlers == 0 { allErrors = append(allErrors, field.Required(fldPath, "must specify a handler type")) } return allErrors }
本文做者:元毅
本文爲雲棲社區原創內容,未經容許不得轉載。