【題解】Cow Relays

題目大意

  求在一張有\(m\)條邊無向連通圖中,點\(s\)到點\(t\)的通過\(k\)條邊的最短路(\(1 \leq m \leq 100\)\(1 \leq k \leq 10^6\))。ios

題解

  邊數\(m\)很小,顯然點數\(n\)也很小,不超過\(200\),咱們能夠先離散化處理。
  咱們能夠獲得\(n\)個點之間的鄰接矩陣,其中矩陣中的\(a[i][j]\)就至關於\(i\)到點\(j\)的通過\(1\)條邊的最短路
  此時咱們設\(dp[i][j][k']\)表示點\(i\)到點\(j\)的通過\(k'\)條邊的最短路,顯然有
\[dp[i][j][1] = a[i][j]\]
  且
\[dp[i][j][k'] = \min \{ dp[i][l][k' - 1]+ dp[l][j][k' - 1] \}, k' > 1\]
  顯然,樸素的dp複雜度爲\(O(kn^2)\)
  觀察這個過程,其實很像矩陣乘法,一樣的,咱們也能夠用矩陣快速冪來優化,這樣複雜度就降到$O(n^2 \log{k}) $了。優化

#include <iostream>
#include <cstring>
#include <algorithm>

#define MAX_M (100 + 5)

using namespace std;

int K, m, s, t;
int u[MAX_M], v[MAX_M];
long long w[MAX_M];
int tmp[MAX_M << 1];
int to[1000005], n;

struct Matrix
{
    long long mat[MAX_M][MAX_M];
    
    Matrix()
    {
        memset(mat, 0x3f, sizeof mat);
        return;
    }
    
    friend Matrix operator * (Matrix a, Matrix b)
    {
        Matrix c;
        for(int i = 1; i <= n; ++i)
        {
            for(int j = 1; j <= n; ++j)
            {
                for(int k = 1; k <= n; ++k)
                {
                    c.mat[i][j] = min(c.mat[i][j], a.mat[i][k] + b.mat[k][j]);
                }
            }
        }
        return c;
    }
    
    friend Matrix operator *= (Matrix & a, Matrix b)
    {
        return a = a * b;
    }
};

Matrix a;

int main()
{
    cin >> K >> m >> s >> t;
    for(int i = 1; i <= m; ++i)
    {
        cin >> w[i] >> u[i] >> v[i];
        tmp[i << 1 ^ 1] = u[i];
        tmp[i << 1] = v[i];
    }
    sort(tmp + 1, tmp + m + m + 1);
    for(int i = 1; i <= (m << 1); ++i)
    {
        if(tmp[i] != tmp[i - 1]) to[tmp[i]] = ++n;
    }
    for(int i = 1; i <= m; ++i)
    {
        u[i] = to[u[i]];
        v[i] = to[v[i]];
        a.mat[u[i]][v[i]] = min(a.mat[u[i]][v[i]], w[i]);
        a.mat[v[i]][u[i]] = min(a.mat[v[i]][u[i]], w[i]);
    }
    --K;
    Matrix res = a;
    while(K)
    {
        if(K & 1) res *= a;
        a *= a;
        K >>= 1;
    }
    cout << res.mat[to[s]][to[t]];
    return 0;
}
相關文章
相關標籤/搜索