協程基礎

1、引言

以前咱們學習了線程、進程的概念,瞭解了在操做系統中進程是資源分配的最小單位,線程是CPU調度的最小單位。按道理來講咱們已經算是把cpu的利用率提升不少了。可是咱們知道不管是建立多進程仍是建立多線程來解決問題,都要消耗必定的時間來建立進程、建立線程、以及管理他們之間的切換。多線程

隨着咱們對於效率的追求不斷提升,基於單線程來實現併發又成爲一個新的課題,即只用一個主線程(很明顯可利用的cpu只有一個)狀況下實現併發。這樣就能夠節省建立線進程所消耗的時間。併發

爲此咱們須要先回顧下併發的本質:切換+保存狀態。app

cpu正在運行一個任務,會在兩種狀況下切走去執行其餘的任務(切換由操做系統強制控制),一種狀況是該任務發生了阻塞,另一種狀況是該任務計算的時間過長。函數

184-協程基礎-01.png

ps:在介紹進程理論時,說起進程的三種執行狀態,而線程纔是執行單位,因此也能夠將上圖理解爲線程的三種狀態。學習

一:其中第二種狀況並不能提高效率,只是爲了讓cpu可以雨露均沾,實現看起來全部任務都被「同時」執行的效果,若是多個任務都是純計算的,這種切換反而會下降效率。spa

爲此咱們能夠基於yield來驗證。yield自己就是一種在單線程下能夠保存任務運行狀態的方法,咱們來簡單複習一下:操作系統

  1. yiled能夠保存狀態,yield的狀態保存與操做系統的保存線程狀態很像,可是yield是代碼級別控制的,更輕量級
  2. send能夠把一個函數的結果傳給另一個函數,以此實現單線程內程序之間的切換
# 單純地切換反而會下降運行效率
# 串行執行
import time
def consumer(res):
    '''任務1:接收數據,處理數據'''
    pass

def producer():
    '''任務2:生產數據'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
# 串行執行
res=producer()
consumer(res) #寫成consumer(producer())會下降執行效率
stop=time.time()
print(stop-start) #1.5536692142486572



# 基於yield併發執行
import time
def consumer():
    '''任務1:接收數據,處理數據'''
    while True:
        x=yield

def producer():
    '''任務2:生產數據'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)

start=time.time()
# 基於yield保存狀態,實現兩個任務直接來回切換,即併發的效果
# PS:若是每一個任務中都加上打印,那麼明顯地看到兩個任務的打印是你一次我一次,即併發執行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344

二:第一種狀況的切換。在任務一遇到io狀況下,切到任務二去執行,這樣就能夠利用任務一阻塞的時間完成任務二的計算,效率的提高就在於此。線程

# yield沒法作到遇到io阻塞
import time
def consumer():
    '''任務1:接收數據,處理數據'''
    while True:
        x=yield

def producer():
    '''任務2:生產數據'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)

start=time.time()
producer() #併發執行,可是任務producer遇到io就會阻塞住,並不會切到該線程內的其餘任務去執行

stop=time.time()
print(stop-start)

對於單線程下,咱們不可避免程序中出現io操做,但若是咱們能在本身的程序中(即用戶程序級別,而非操做系統級別)控制單線程下的多個任務能在一個任務遇到io阻塞時就切換到另一個任務去計算,這樣就保證了該線程可以最大限度地處於就緒態,即隨時均可以被cpu執行的狀態,至關於咱們在用戶程序級別將本身的io操做最大限度地隱藏起來,從而能夠迷惑操做系統,讓其看到:該線程好像是一直在計算,io比較少,從而更多的將cpu的執行權限分配給咱們的線程。code

協程的本質就是在單線程下,由用戶本身控制一個任務遇到io阻塞了就切換另一個任務去執行,以此來提高效率。爲了實現它,咱們須要找尋一種能夠同時知足如下條件的解決方案:

  1. 能夠控制多個任務之間的切換,切換以前將任務的狀態保存下來,以便從新運行時,能夠基於暫停的位置繼續執行。
  2. 做爲1的補充:能夠檢測io操做,在遇到io操做的狀況下才發生切換

2、協程介紹

協程:是單線程下的併發,又稱微線程,纖程。英文名Coroutine。一句話說明什麼是協程:協程是一種用戶態的輕量級線程,即協程是由用戶程序本身控制調度的。

須要強調的是:

  1. python的線程屬於內核級別的,即由操做系統控制調度(如單線程遇到io或執行時間過長就會被迫交出cpu執行權限,切換其餘線程運行)
  2. 單線程內開啓協程,一旦遇到io,就會從應用程序級別(而非操做系統)控制切換,以此來提高效率(!!!非io操做的切換與效率無關

對比操做系統控制線程的切換,用戶在單線程內控制協程的切換。

優勢以下:

  1. 協程的切換開銷更小,屬於程序級別的切換,操做系統徹底感知不到,於是更加輕量級
  2. 單線程內就能夠實現併發的效果,最大限度地利用cpu

缺點以下:

  1. 協程的本質是單線程下,沒法利用多核,能夠是一個程序開啓多個進程,每一個進程內開啓多個線程,每一個線程內開啓協程
  2. 協程指的是單個線程,於是一旦協程出現阻塞,將會阻塞整個線程

總結協程特色:

  1. 必須在只有一個單線程裏實現併發
  2. 修改共享數據不需加鎖
  3. 用戶程序裏本身保存多個控制流的上下文棧
  4. 附加:一個協程遇到IO操做自動切換到其它協程(如何實現檢測IO,yield、greenlet都沒法實現,就用到了gevent模塊(select機制))
相關文章
相關標籤/搜索